화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.20, No.5, 517-521, October, 2009
물리화학적 가수분해에 의한 갈조류 바이오 에탄올 생산
Production of Bio-ethanol from Brown Algae by Physicochemical Hydrolysis
E-mail:
초록
본 연구는 다양한 갈조류를 이용한 바이오 에탄올 생산을 실험하였다. 갈조류 다당류는 alginate와 laminaran으로 구성되어 있으며, 이를 단당류로 가수분해하면 바이오 에탄올을 생산 할 수 있는 가능성이 높다. 본 연구에서는 열처리와 산 처리 이용하여 갈조류를 당화하고 이를 통한 바이오 에탄올 생산을 확인고자 한다. 에탄올 발효에는 Saccharomyces cerevisiae KCCM1129와 Pachysolen tannophilus KCTC 7937를 이용하였으며, 에탄올 발효효율은 모자반이나 톳보다 다시마에서 월등히 높았다. 다시마를 이용한 최적 전처리 조건에서의 발효 결과 Saccharomyces cerevisiae KCCM1129와 Pachysolen tannophilus KCTC 7937에서 각각 1.83 g/L, 1.96 g/L의 에탄올 생산을 확인 할 수 있었다. 반면, 모자반과 톳에서의 최대 생산량은 0.22 g/L로 매우 낮았다.
In this study, the productivity of bio-ethanol obtained from various brown-algae raw materials was examined. Brown-algae polysaccharide, consisting of alginate and laminaran, is usable for the effective production of bio-ethanol if it is hydrolyzed to monomer unit. The objective of this study is the production of bio-ethanol from brown-algae using a heat-treatment and acid-treatment. Bio-ethanol was produced by Saccharomyces cerevisiae KCCM1129 and Pachysolen tannophilus KCTC 7937 strains. Laminaran japonica was higher than Sagassum fulvellum and Hizikia fusiformis, Laminaran japonica optimum pre-treatment is used to derive the ethanol production of Saccharomyces cerevisiae KCCM1129 and Pachysolen tannophilus KCTC 7937 respectively 9.16 g/L, 9.80 g/L. The maximum output of Sargassum fulvellum and Hizikia fusiformis was very low as 0.22 g/L.
  1. Park JI, Woo HC, Lee JH, Korean Chem. Eng. Res., 46(5), 833 (2008)
  2. Chung JH, Kwon GS, Jang HS, Kor. J. Microbiol. Biotechnol., 36, 1 (2008)
  3. Hirano A, Ueda R, Hirayama S, Ogushi Y, Energy, 22(2-3), 137 (1997)
  4. Saha BC, Cotta MA, Enzyme Microb. Technol., 41(4), 528 (2007)
  5. Hahn-Hagerdal B, Galbe M, Gorwa-Grauslund MF, Liden G, Zacchi G, Trends Biotechnol., 24, 549 (2006)
  6. Han HJ, Kim SJ, Korean J. Biotechnol. Bioeng., 21, 267 (2006)
  7. Lee DS, Kim HR, Cho DM, Nam TJ, Pyeun JH, J. Kor. Fish. Soc., 31, 1 (1998)
  8. Yoon MO, Lee SC, Rhim JW, Kim JM, J. Kor. Fish. Sci. Nutr., 33, 747 (2004)
  9. Korenaga T, Fujii SI, J. Food Compos. Anal., 13, 865 (2000)
  10. Park YH, Bull. Kor. Fish. Soc., 2, 71 (1969)
  11. Kim YO, Kim GT, Kim HK, Kim DK, Huh SH, Kong IS, J. Kor. Fish. Soc., 29, 637 (1996)
  12. Kim HY, Hong KH, Choi JD, Park SK, Jung SS, Choi WJ, Ahn YS, Hong YP, Song OJ, Moon DC, Lee SH, Shin IS, Korean J. Food. Sci. Technol., 38, 1 (2006)
  13. Joo DS, Lee JS, Park JJ, Cho SY, Ahn CB, Lee EH, Kor. J. Appl. Microbiol. Biotechnol., 23, 432 (1995)
  14. Lee JH, Lee EY, Kor. J. Life Sci., 13, 718 (2003)
  15. Cho SY, Kang HJ, Joo DS, Lee JS, Kim SM, J. Kor. Fish. Soc., 32, 774 (1999)
  16. Horn SJ, Aasen IM, Østgaard K, J. Ind. Microbiol. Biotechnol., 25, 249 (2000)
  17. Horn SJ, Aasen IM, Østgaard K, J. Ind. Microbiol. Biotechnol., 24, 51 (2000)
  18. Joo DS, Lee JS, Park JJ, Cho SY, Kim HK, Lee EH, Korean J. Food. Sci. Technol., 28, 146 (1996)
  19. Kim HK, Lee JC, Kang NH, Kim SH, Kim JG, Chung KC, J. Life Science., 17, 625 (2007)
  20. Kim HS, Bae TJ, J. Kor. Fish. Soc., 35, 438 (2002)
  21. Lim YS, You BJ, J. Kor. Fish. Soc., 40, 187 (2007)
  22. Hien NQ, Nagasawa N, Tham LX, Yoshii F, Dang VH, Mitomo H, Makuuchi K, Kume T, Radiat. Phys. Chem., 59, 97 (2000)
  23. Lim YS, You BJ, J. Kor. Fish. Soc., 39, 313 (2006)
  24. Joo DS, Choi YS, Cho SY, J. Kor. Fish. Soc., 36, 1 (2003)