화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.20, No.5, 465-472, October, 2009
다공성 탄소계 재료를 이용한 수소저장 기술
Hydrogen Storage Technology by Using Porous Carbon Materials
E-mail:
초록
본 총설에서는 최근 주로 연구되고 있는 활성탄, 탄소나노튜브, 팽창 흑연 및 활성 탄소 섬유 등 다공성 탄소재료를 중심으로 수소 저장량을 증대시키기 위한 기술 및 기 발표된 수소저장량과 그 장.단점에 대하여 고찰하였다. 수소저장능을 향상시키기 위한 탄소 내 기공의 최적의 크기는 0.6∼0.7 nm로 조사되었다. 촉매의 경우 전이금속 및 그 금속 산화물이 많이 이용되었으며, 주로 다공성 탄소재료에 도핑을 통해 수소저장능을 향상시켰다. 수소저장 매체인 다공성 탄소재료 중에서 활성탄은 대량생산이 가능하여 가격이 비교적 저렴한 장점이 있고 탄소나노튜브는 튜브의 튜브 간 공간 외에도 내부공간에 수소를 저장할 수 있는 공간이 수소저장에 활용될 수 있다는 장점이 있다. 팽창 흑연은 흑연의 층 사이에 알칼리 금속의 삽입 시 층간 거리가 팽창하여 수소저장에 용이하고, 활성탄소섬유는 높은 비표면적과 발달된 미세기공이 수소흡착에 크게 기여한다는 점이 있다. 이러한 기존의 연구로 고려해 볼 때 다공성 탄소재료는 아직 달성되지 못한 DOE의 수소저장 목표치에 도달하기 위한 주요 유망한 후보재료 중의 하나이다.
The technologies for improving the capacity of hydrogen storage were investigated and the recent data of hydrogen storage by using various porous carbon materials were summarized. As the media of hydrogen storage, activated carbon, carbon nanotube, expanded graphite and activated carbon fiber were mainly investigated. The hydrogen storage in the carbon materials increased with controlled pore size about 0.6∼0.7 nm. In case of catalyst, transition metal and their metal oxide were mainly applied on the surface of carbon materials by doping. Activated carbon is relatively cheap because of its production on a large scale. Carbon nanotube has a space inside and outside of tube for hydrogen storage. In case of graphite, the distance between layers can be extended by intercalation of alkali metals providing the space for hydrogen adsorption. Activated carbon fiber has the high specific surface area and micro pore volume which are useful for hydrogen storage. Above consideration of research, porous carbon materials still can be one of the promising materials for reaching the DOE target of hydrogen storage.
  1. Bouza A, Read CJ, Satyapal S, Milliken J, DOE Hydrogen Program, FY, Program Rev. (2004)
  2. Kim JW, Hydrogen storage, ed. Kim GB, 1, 223, Seoul (2005)
  3. Im JS, Park SJ, Kim TJ, Kim YH, Lee YS, J. Colloid Interf. Sci., 318, 42 (2008)
  4. Gogotsi Y, Portet C, Osswald S, Simmons JM, Yildirim T, Laudisio G, Fischer JE, Int. J. Hydrogen Energy, In Press (2009)
  5. Zubizarreta L, Menendez JA, Pis JJ, Arenillas A, Int. J. Hydrogen Energy, 34, 3070 (2009)
  6. Im JS, Park SJ, Kim TJ, Lee YS, Int. J. Hydrogen Energy, 34, 3382 (2009)
  7. Chen CH, Huang CC, Int. J. Hydrogen Energy, 32, 237 (2007)
  8. Kunowskya M, Weinbergerb B, Darkrimb FL, Garcı’aa FS, Amoro’sa DC, Solanoa AL, Int. J. Hydrogen Energy, 33, 3091 (2008)
  9. Jorda-Beneyto M, Suarez-GarcıLa F, Lozano-Castello D, Cazorla-Amoros D, Linares-Solano A, Int. J. Hydrogen Energy, 45, 293 (2007)
  10. Xua WC, Takahashia K, Matsuoa Y, Hattoria Y, Kumagaia M, Ishiyamab S, Kanekoc K, Iijimad S, Int. J. Hydrogen Energy, 32, 2504 (2007)
  11. Tiana HY, Buckleya CE, Wangc SB, Zhoud MF, Carbon, 47, 2112 (2009)
  12. Georgiev PA, Ross DK, Albers P, Ramirez-Cuesta AJ, Carbon, 44, 2724 (2006)
  13. Schlapbach L, Zuttel A, Nature, 414, 353 (2001)
  14. Shiraishi M, Takenobu T, Kataura H, Ata M, Appl. Phys. A, 78, 947 (2004)
  15. Li Y, Zhao D, Wanga Y, Xue R, Shen Z, Li X, Int. J. Hydrogen Energy, 32, 2513 (2006)
  16. Gordon PA, Saeger PB, Ind. Eng. Chem. Res., 38(12), 4647 (1999)
  17. Bauqhman RH, Zakhidov AA, Heer WA, Science, 297, 787 (2002)
  18. Chen P, Xiong ZT, Luo JZ, Lin JY, Tan KL, Nature, 420, 302 (2002)
  19. Jin H, Lee YS, Hong I, Catal. Today, 120(3-4), 399 (2007)
  20. Liu C, Yang QH, Tong Y, Cong HT, Cheng HM, Appl. Phys. Letter, 80, 2389 (2002)
  21. Smith MR, Bittner EW, Shi W, Johnson JK, Bockrath BC, J. Phys. Chem. B, 107(16), 3752 (2003)
  22. Hirscher M, Becher M, Haluska M, Detlaff-Weglikowska U, Quintel A, Duesberg GS, Coi YM, Downes P, Hulman M, Roth S, Stepanek I, Bernier, P, Appl. Phys. A, 72, 129 (2001)
  23. Hirscher M, Becher M, Haluska M, Quintel A, Skakalova V, Coi YM, Detlaff-Weglikowska U, Roth S, Stepanek I, Bernier P, Leonhardt A, Fink J, J. Alloys Compd., 654, 330 (2001)
  24. Ritschel M, Uhlemann M, Gutfleisch O, Leonhardt A, Graff A, Taschner C, Fink J, Appl. Phys. Letter, 80, 2985 (2002)
  25. Ding RG, Lu GQ, Lan ZF, unpublished results (2003)
  26. Pradhan BK, Harutyunyan A, Stojkovic D, Zhang P, Cole MW, Crespi V, Goto H, Fujiwara J, Eklund PC, Mater. Res. Soc. Symp. Proc., 706, 331 (2002)
  27. Zhu H, Cao A, Li X, Xu C, Mao Z, Ruan D, Liang J, Wu D, Appl. Surf. Sci., 178, 20 (2001)
  28. Cao AY, Zhu HW, Zhang XF, Li XS, Ruan DB, Xu CL, Wei BQ, Liang J, Wu DH, Chem. Phys. Lett., 342(5-6), 510 (2001)
  29. Badzian A, Badzian T, Breval E, Piotrowski A, Thin Solid Films, 170, 398 (2001)
  30. Nishimiya N, Ishigaki H, Takikawa H, Ikeda M, Hibi Y, Sakakibara T, Matsumoto A, Tsutsumi K, J. Alloys Compd., 339, 275 (2002)
  31. Rather S, Naik M, Hwang SW, Kim AR, Nahm KS, J. Alloys Compd., 475, L17 (2009)
  32. Rather S, Naik M, Zacharia R, Hwang SW, Kim AR, Nahm KS, Int. J. Hydrogen Energy, 34, 961 (2009)
  33. Chen CH, Huang CC, Int. J. Hydrogen Energy, 32, 237 (2007)
  34. Rakhi RB, Sethupathi K, Ramaprabhu S, Int. J. Hydrogen Energy, 33, 381 (2008)
  35. Mu S, Tang H, Qian S, Pan M, Yuan R, Carbon, 44, 762 (2006)
  36. Reddy ALM, Ramaprabhu S, Int. J. Hydrogen Energy, 32, 3998 (2007)
  37. Williams KA, Eklund PC, Chem. Phys. Lett., 320(3-4), 352 (2000)
  38. Chen CH, Huang CC, Sep. Purif. Technol., 65, 305 (2009)
  39. Strobel R, Garche J, Moseley PT, Jorissen L, Wolf G, J. Power Sources, 159(2), 781 (2006)
  40. Ahn CC, Vajo JJ, Yazami R, Brown DW, Bowman RC, DOE Hydrogen Program, FY, Progress Report (2002)
  41. Enoki T, Suzuki M, Endo M, Oxford University Press, Oxford (2003)
  42. Yildirim T, Ciraci S, Phys. Rev. Letter, 94, 175501 (2005)
  43. Yildirim T, Iniguez J, Ciraci S, Phys. Rev. B, 72, 153403 (2005)
  44. Dillon AC, Parilla PA, Gennet T, Gilbert KEH, Blackburn JL, Kim YH, Zhao Y, Zhang SB, Alleman JL, Jones KM, McDonald T, Heben M
  45. Gupta BK, Srivastava ON, Int. J. Hydrogen Energy, 25, 825 (2000)
  46. Zhang C, Lu X, Gu A, Int. J. Hydrogen Energy, 29, 1271 (2004)
  47. Cheng HM, Liu C, Fan YY, Li F, Su G, Cong HT, Zeitschrift fur Metallkunde, 91, 306 (2000)
  48. Yin YF, Mays T, McEnaney B, Langmuir, 16(26), 10521 (2000)
  49. Rodriguez N, MRS Fall Meeting, 6, D11, Boston (1996)
  50. Browning DJ, Gerrard ML, Laakeman JB, Mellor IM, Mortimer RJ, Turpin MC, Proc. 13th World Hydrogen Energy Confer., eds. Mao ZQ, Veziroglu TN, 580, Beijing, China (2000)
  51. Gupta BK, Awasthi K, Srivastava ON, Proc. 13th World Hydrogen Energy Confer., eds. Mao ZQ, Veziroglu TN, 487, Beijing, China (2000)
  52. Schlappach L, Zuettel A, Nature, 414, 353 (2001)
  53. Huang CW, Wu HC, Li YY, Sep. Purif. Technol., 58(1), 219 (2007)
  54. Isobe S, Ichikawa T, Gottwald JI, Gomibuchi E, Fujii H, J. Phys. Chem. Solids, 65, 535 (2004)
  55. Kim BJ, Lee YSE, Park SJ, J. Colloid Interface Sci., 318(2), 530 (2008)
  56. Salvador F, Sanchez-Montero MJ, Montero J, Izquierdo C, J. Power Sourc., 190, 331 (2009)
  57. Zhu HW, Li XS, Ci LJ, Xu CL, Wu DH, Mao ZQ, Mater. Chem. Phys., 78(3), 670 (2003)
  58. Hong WZ, Chun HL, Xue SL, Cai LX, Zong QM, Ji L, De HW, Mater. Lett., 57, 32 (2002)
  59. Blackman JM, Patrick JW, Arenillas A, Shi W, Snape CE, Carbon, 44, 1376 (2006)
  60. Im JS, Park SJ, Lee YS, Mater Res Bull, In Press (2009)
  61. Im JS, Park SJ, Lee YS, Int. J. Hydrogen Energy, 34, 1423 (2009)