Journal of Hazardous Materials, Vol.154, No.1-3, 946-953, 2008
Interactions of NO2 with sewage sludge based composite adsorbents
Interactions of NO2 present in most air were analyzed at room temperature on composite sewage sludge-derived adsorbents. They consist of carbonaceous and inorganic phases with the majority of the latter. The adsorption capacity was evaluated using the dynamic breakthrough experiments. The materials before and after NO2 exposure were characterized using adsorption of nitrogen, thermal analysis and FTIR. The results showed differences in the surface activities of sludge-derived materials towards immnobilization and reduction of nitric dioxide. Nitrates and nitrite are the main products of surface reactions. This is linked to the presence of active oxides and hydroxides, which are formed when the surface is exposed to water. The highest activity of the sample pyrolyzed at 650 degrees C is owing to the high content of those species formed as a result of decomposition of inorganic salts (likely chlorides, sulfates and phosphates) during thermal treatment. When sludge is pyrolyzed at 950 degrees C those oxides are engaged in stable mineral phases formed in solid-state reactions, which limits the surface activity towards NO2 retention. The reactivity of the high temperature pyrolyzed samples can be linked to the physical adsorption of water. In a water film nitrous and nitric acid can be formed and they can further react with inorganic and carbonaceous, phases to the limited extent. (C) 2007 Published by Elsevier B.V.