화학공학소재연구정보센터
Journal of Physical Chemistry A, Vol.112, No.25, 5604-5612, 2008
Photophysics of (1-Butyl-4-(1H-inden-1-ylidene)-1,4-dihydropyridine (BIDP): An experimental test for conical intersections
Fluorescence experiments on (1-butyl-4-(1H-inden-1-ylidene)-1,4-dihydropyridine (BIDP) are reported in liquid and glassy solutions. The data indicate a fast decay in the fluid nonpolar, nonprotic solutions (decay times similar to 10(-12) s) and rapid but considerably slower decay in polar ones. In frozen solutions (polar and nonpolar), the fluorescence quantum yield is much higher (near 0.5 and around 0.1 in polar and nonpolar glasses, respectively). The rapid nonradiative transitions in fluid solutions are assigned to internal conversion in both solvent classes, as intersystem crossing is much slower and no net reaction is observed. These results are in agreement with predictions made for the closely related (in terms of electronic structure) but simpler molecule cyclopentadienyl-1,4-dihydropyridine (CPDHP) for which an S-1/S-0 conical intersection was recently proposed [Int. J. Quant. Chem. 2005, 102, 961]. The crossing of the two lowest singlet states is calculated to vanish in polar solvents such as methyl cyanide, leading to longer lifetime of S, of CPDHP. As BIDP has a very similar electronic structure, the model predicts a corresponding change in this larger molecule. The strong fluorescence observed in the glassy environments is rationalized by the hindering of the internal torsion required to reach the geometry of the conical intersection.