화학공학소재연구정보센터
Journal of Physical Chemistry A, Vol.112, No.23, 5251-5257, 2008
Theoretical study on reaction mechanism of fulminic acid HCNO with CN radical
The HCNO + CN reaction is one potentially important process during the NO-reburning process for the reduction of NO chi pollutants from fossil fuel combustion emissions. To compare with the recent experimental study, we performed the first theoretical potential energy surface investigation on the mechanism of HCNO + CN at the G3B3 and CCSD(T)/aug-cc-pVTZ levels based on the B3LYP/6-311++G(d,p) structures, covering various entrance, isomerization, and decomposition channels. The results indicate that the most favorable channel is to barrierlessly form the entrance isomer L1c NCCHNO followed by successive ring closure and concerted CC and NO bond rupture to generate the product P1 HCN + NCO. However, the formation of P4 (HCCN)-H-3 + NO, predicted as the only major product in the recent experiment, is kinetically much less competitive. This conclusion is further supported by the master equation rate constant calculation. Future experimental reinvestigations are strongly desired to test the newly predicted mechanism for the CN + HCNO reaction. Implications of the present results are discussed.