Journal of Physical Chemistry A, Vol.112, No.22, 4885-4894, 2008
An interpretation of the enhancement of the water dipole moment due to the presence of other water molecules
The dipole moment of the gas phase water monomer is 1.85 D. When solvated in bulk water, the dipole moment of an individual water molecule is observed to be enhanced to the much larger value of 2.9 +/-0.6 D. To understand the origin of this dipole moment enhancement, the effective fragment potential (EFP) method is used to solvate an ab initio water molecule to predict the dipole moments for various cluster sizes. The dipole moment as a function of cluster size, nH(2)O, is investigated [for n = 6-20 (even n), 26, 32, 41, and 50]. Localized charge distributions are used in conjunction with localized molecular orbitals to interpret the dipole moment enhancement. These calculations suggest that the enhancement of the dipole moment originates from the decrease of the angle between the dipole vectors of the lone pairs on oxygen as the number of hydrogen bonds to that oxygen increases. Thus, the decreased angle, and the consequent increase in water dipole moment, is most likely to occur in environments with a larger number of hydrogen bonds, such as the center of a cluster of water molecules.