Journal of Physical Chemistry A, Vol.112, No.19, 4451-4457, 2008
Catalytic cycles for the reduction of [UO2](2+) by cytochrome c(7) proteins proposed from DFT calculations
The mechanism of the reduction of the hydrated uranyl cation, [UO2](2+), by the cytochromes G. sulfurreducens and D. acetoxidans has been studied using density functional theory calculations. We propose that the initial electron transfer step from the heme is to a cation-cation complex in the case of D. acetoxidans, but for G. sulfurreducens, it is to a single uranyl cation, which then forms a U(V)-U(VI) complex with a second uranyl cation. For both enzymes, the subsequent catalytic pathways are very similar. A U(V)-U(V) complex is formed, which then undergoes disproportionation via two successive protonation steps of one uranyl group, to give a U(VI)-U(IV) complex which dissociates to individual U(VI) and U(IV) species, the former being bound at the enzyme active site. Intermediate structures along the catalytic pathway are consistent with EXAFS data.