Journal of Physical Chemistry A, Vol.112, No.15, 3466-3477, 2008
Assessing the performance of density functional theory for the electronic structure of metal-salens: The 3d(0)-metals
A series of metal-salen complexes of the 3d(0) metals Sc(III), Ti(IV), V(V), Cr(VI), and Mn(VII) have been explored using high-level electronic structure methods including coupled-cluster theory with singles, doubles, and perturbative triples as well as complete active-space third-order perturbation theory. The performance of three common density functional theory approaches has been assessed for both the geometries and the relative energies of the low-lying electronic states. The nondynamical correlation effects are demonstrated to be extremely large in all of the systems examined. Although density functional theory provides reasonable results for some of the systems, the overall agreement is quite poor. This said, the density functional theory approaches are shown to outperform the single-reference perturbation theory and coupled-cluster theory approaches for cases of strong nondynamical correlation.