화학공학소재연구정보센터
Journal of Catalysis, Vol.256, No.1, 95-107, 2008
Shape-selective n-alkane hydroconversion at exterior zeolite surfaces
A critical review of the adsorption and catalysis of n- and methylalkanes demonstrates that the interior surface of TON- and MTT-type zeolites dominates both adsorption and catalysis, and that the contribution from the exterior surface is negligible. For both n- and methylalkane isomers, the experimental Henry constants at the interior TON-type zeolite surface are more than an order of magnitude greater than those at the exterior surface. Molecular simulations on exclusively interior TON-type silica surface reproduce the adsorption isotherms of n- and methylalkane isomers remarkably well and suggest that even an isomer as bulky as 2,3-dimethylpentane could have access to the interior TON-type zeolite surface. Only the reference state used in solution thermodynamics affords an equitable comparison between internal and external surface thermodynamics. It indicates that methylalkanes adsorb in a structured fashion at the exterior TON-type zeolite surface when the interior surface is inaccessible. But the entropic penalty for this organized exterior surface "pore mouth" or "key-lock" adsorption is high, so that methylalkanes prefer adsorption at the interior surface when it is accessible. We speculate that CHA-and ERI-type sieves exhibit exterior surface catalysis in long n-alkane conversion, but the database remains too small to allow investigation of the full potential of shape selectivity in exterior zeolite surface catalysis. (C) 2008 Elsevier Inc. All rights reserved.