Journal of Applied Polymer Science, Vol.109, No.3, 1935-1943, 2008
Flame retardancy of hollow glass microsphere/rigid polyurethane foams in the presence of expandable graphite
Rigid polyurethane foams (RPUF) filled with various loadings of expandable graphite (EG) or/and hollow glass microspheres (HGM) were prepared by cast molding. The flame retardant properties of these composites were investigated by limiting oxygen index (1,01), horizontal and vertical burning tests. The composite with 10 wt % HGM and 20 wt % EG had the best flame retardant properties, and its LOI value reached 30 vol %. The addition of an appropriate loading of HGM improved the compressive strength and modulus of RPUF and EG/RPUF. When the HGM content arrived at 10 wt %, the compressive strength and modulus of the composites reached the maximum value. The dynamical mechanical analysis (DMA) showed that the addition of EG and HGM made the glass transition temperature shift to a higher temperature, and 10 wt % EG and 10 wt % HGM filled RPUF had the highest storage modulus. The scanning electronic microscope (SEM) observation indicates that the additives led to the decrease in the cell size. In addition, the flame retardant mechanism, the thermal properties, the burned surfaces and the interface surfaces were elucidated. (C) 2008 Wiley Periodicals, Inc.
Keywords:polyurethane foams;expandable graphite-hollow glass microsphere;flame retardant;mechanical properties