화학공학소재연구정보센터
Journal of Applied Polymer Science, Vol.109, No.1, 340-349, 2008
Epoxy nanocomposites containing mercaptopropyl polyhedral oligomeric silsesquioxane: Morphology, thermal properties, and toughening mechanism
A novel polyhedral oligomeric silsesquioxane (POSS) containing a mercaptopropyl group [mercaptopropyl polyhedral oligomeric silsesquioxane (MPOSS)] was synthesized via the hydrolytic condensation of gamma-mercaptopropyl triethoxysilane in an ethanol solution catalyzed by concentrated hydrochloric acid and was used to modify epoxyamine networks by a cocuring reaction with diglycidyl ether of bisphenol A (DGEBA). The structure, morphology, and thermal and mechanical properties of these MPOSS/DGEBA epoxy nanocomposites were studied and investigated with thermogravimetric analysis/differential thermal analysis (TGA-DTA), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR). From SEM analysis, we observed that the miscibility between epoxy and POSS occurred at a relatively high POSS content, which characterized this mixture as a polymer nanocomposite system. The impact test showed that MPOSS reinforced the epoxy effectively, and the SEM study of the impact fracture surface showed that the fibrous yielding phenomenon observed was an indication of the transition of the brittle stage to a ductile stage and correlated welt with the large increases in the impact strength; this was in agreement with the in situ reinforcing and toughening mechanism. The TGA-DTA analysis indicated that the MPOSS/DGEBA epoxy hybrids exhibited lower thermostability at a lower temperature but higher thermostability and higher efficiency in char formation at an elevated temperature. Differential scanning calorimetry showed that the glass transition temperature (T-g) of the MPOSS/epoxy hybrids were lower than that of the neat epoxy. (C) 2008 Wiley Periodicals, Inc.