화학공학소재연구정보센터
Fuel Processing Technology, Vol.89, No.2, 203-213, 2008
Resolution of near-infrared spectral data from distillation of binary mixtures and calculation of band boundaries of feasible solutions for species profiles
In this work, mean centering, ordinary and incomplete rank annihilation based methods were applied to estimate concentration profiles (g/mL) and pure spectra of components from an evolutionary near infrared spectral data for successive condensates from distillation process of binary mixtures. Constraints such as non-negativity, selectivity of some spectral regions and density of condensates were applied during the resolution of some series of data. Fixed size moving window evolving factor analysis (FSMWEFA) and orthogonal projection analysis (OPA) were the applied chemometrics methods for assigning the selective regions. No pure spectrum from any of components or calibration samples was necessary for performing the analysis. Three binary mixtures containing toluene:n-hexane, toluene:cyclohexene and toluene:ethanol were investigated using the proposed method. Band boundaries of feasible solutions for pure absorption spectra and species concentration profiles for the mixture of components were successfully estimated in presence of high spectral overlap. In the first case the solution was unique, but in the second and third distillations a number of acceptable solutions were obtained as band boundaries. (c) 2007 Elsevier B.V. All rights reserved.