화학공학소재연구정보센터
Polymer(Korea), Vol.21, No.6, 1029-1038, November, 1997
에폭시/탄소섬유 복합재료의 온도변화가 수반된 수분흡수 거동에 관한 연구
Hygrothermal Cycling Studies of Epoxy/Cabon Fiber Composite Laminate
초록
본 연구에서는 에폭시/탄소섬유 복합재료의 온도변화가 수반된 수분흡수 현상을 연구하였다. 등온조건하에서는 일반적으로 알려진 바와 같이 시편이 높은 온도 조건에서 더 많은 양의 물을 더 빨리 흡수하였으며 이는 Fick's second law를 따른다는 것을 확인하였다. 그러나 온도주기를 경험한 시편의 수분흡수량은 복잡한 거동을 보였는데 이는 흡수된 수분을 자유수분과 억제수분으로 나추어 정의함으로써 설명할 수 있었다. 특히 자유수분은 온도이력과 관계가 있는 것으로 확인되었다. 수분을 흡수한 시편의 Tg는 흡수된 수분의 총량과 선형적인 관계가 있는 것으로 관찰되었는데, 예를 들어 복합재료는 흠수에 의하여 Tg가 50 ℃ 이상 감소될 수 있다는 것을 알 수 있었다.
Water uptake in sorption experiments made on epoxy/carbon fiber composites have been investigated in various temperature conditions. Equilibrium moisture uptake and diffusion rate in hygrothermal cycling were viewed and analysed as thermodynamic and kinetic Processes, respectively. According to Fick's law, the diffusion coefficients of water in sorption/desorption processes were measured and exhibited a linear relationship with the in verse temperature. Equilibrium water uptake was quantitatively analyzed by bound water and free water. The amount of each water were experimentally determined by hygrothermal cycling. Wet Tg decreased by the absorbed moisture and was linearly correlated with the total equilibrium moisture contents.
  1. Apicella A, Nicolais L, Ind. Eng. Chem. Prod. Res. Dev., 20, 138 (1981) 
  2. Kelly FN, Bueche F, J. Polym. Sci., 16, 75 (1981)
  3. Moy P, Karasz FE, Polym. Eng. Sci., 20, 315 (1980) 
  4. Banks L, Ellis B, Polym. Bull., 1, 377 (1979) 
  5. Browing CE, Polym. Eng. Sci., 18, 16 (1978) 
  6. Morgan RJ, O'Neal J, J. Mater. Sci., 12, 1966 (1977) 
  7. Loos AC, Springer GS, J. Compos. Mater., 13, 17 (1979)
  8. Hull D, "Introduction of Composite Materials," Cambridge University Press, Cambridge (1992)
  9. Apicella A, Nicolais L, Astarita G, Drioli E, Polymer, 20, 1143 (1979) 
  10. Ashbee KHG, Wyatt RC, Proc. R. Soc. Lond., A312, 553 (1969)
  11. Milkos WJ, Seferis A, Apicella A, Nicolas L, Polym. Compos., 3, 118 (1982) 
  12. Apicella A, Nicolais L, Ind. Eng. Chem. Prod. Res. Dev., 23, 288 (1984) 
  13. Apicella A, Nicolais L, Astarita G, Drioli E, Polymer, 22, 1064 (1981) 
  14. Mears P, 124th Meeting of ACS, Chicago, Sept. (1953)
  15. Lee I, Sturt M, "International Encyclopedia of Composites," VCH Publishers, New York, U.S.A. (1991)
  16. Smith JM, VanNess MC, "Introduction to Chemical Engineering Thermodynamics," 3th Ed., McGrow-Hill, U.S.A. (1975)
  17. Lele AK, Hirve MM, Badiger MV, Mashelkar RA, Macromolecules, 30(1), 157 (1997) 
  18. Jordan SS, Koros WJ, Macromolecules, 28(7), 2228 (1995) 
  19. Crank J, Park GS, "Diffusion in Polymer," Academic Press, London, UK (1945)
  20. Crank J, "The Mathmatics of Diffusion," 2nd Ed., Oxford University Press, Oxford, UK (1975)
  21. Flory PJ, "Principles of Polymer Chemistry," Cornell University Press, Ithaca, New York (1953)
  22. Bero CA, Plazek DJ, J. Polym. Sci. B: Polym. Phys., 29, 39 (1991) 
  23. Michaels AS, Vieth RV, Barrie JA, J. Appl. Phys., 34, 13 (1963) 
  24. Apicella A, Tessiery R, Cataldis C, J. Membr. Sci., 18, 211 (1984) 
  25. Apicella A, Niclais L, Astarita G, Drioli E, Polym. Eng. Sci., 21, 18 (1981) 
  26. Prausniz JM, "Molecular Thermodynamics of Fluid-Phase Equlibria," Prentice-Hall, New Jersey, U.S.A. (1986)
  27. Fredrickson GH, Helfand E, Macromolecules, 18, 2201 (1985) 
  28. Vieth WR, Sladek KJ, Colloid Sci., 20, 1014 (1965) 
  29. Petropoulos JH, J. Polym. Sci. A: Polym. Chem., 8, 1797 (1970)
  30. Paul DR, Koros WJ, Polym. Sci. Polym. Phys. Ed., 14, 675 (1973)