화학공학소재연구정보센터
Polymer(Korea), Vol.21, No.6, 885-893, November, 1997
폴리비닐알코올모노티올의 존재하에서 Potassium Persulfate-Sodium Bisulfite계 레독스 개시제에 의한 초산비닐의 무유화제 유화중합:Ⅲ
Soap-free Emulsion Polymerization of Vinly Aectate Initiated by Potassium Persulfate-Sodium Bisulfite Redox System in the Presencd of Poly(vinyl alcohol) Mono Thiol : Ⅲ
초록
폴리비닐알코올모노티올(PVALT)의 존재하에서 레독스 개시제로써 potassium persulfate(KPS)와 sodium bisulfite(SBS)를 사용하여 초산비닐의 무유화제 유화중합을 검토하였라. 중합속도, 입자크기 및 입경분포도를 레독스 개시제의 농도, PVALT의 농도, 물/단량체의 비율, 중합온도 그리고 교반속도에 따라서 조사하였다. KPS의 농도가 증가하거나 물/단량체의 비율이 감소함에 따라서 중합속도는 빨랐으며 입자크기는 커졌다. 아울러 KPS와 SBS의 레독스 반응이 정량적으로 진행됨을 알았다. PVALT의 농도는 중합속도와 입자크기에 영향을 주는 것으로 관찰되었다. 교반속도가 증가하거나 첨가된 탄산나트륨의 농도가 높아짐에 따라서 입자크기는 커졌다. 그러나 교반속도 200∼300rpm의 범위에서는 중합속도나 입자크기는 변화가 거의 없었다. 중합반응의 최대 전환율을 얻기 위한 최적 pH값은 7.8이었다.
Effects of potassium persulfate (KPS) and sodium bisulfite (SBS) as redox pair initiation system on soap-free emulsion polymerization of vinyl acetate in the presence of Poly(vinyl alcohol) mono thiol (PVALT) were studied. Variation of polymerization late, particle size, and the particle sixte distribution were monitored as concentration of redox initiator and PVALT, ratio of water/monomer, polymerization temperature, and stirring speed changed. Both polymerization rate and particle size were increased when concentration of KPS increased or the ratio of water/mcnomer decreased. The redox reaction of KPS and SBS were found to be quantitative. The polymerization rate and particle sixte could be changed by controlling the PVALT concentration. Increased Particle size was observed when stirring speed increased or the concentration of sodium carbonate increased. But the stirring speed of 200 to 300 rpm did not induce any significant change in polymerization rate or particle size. The maximum conversion rate of polymerization was achieved at pH 7.8.
  1. Park LS, Lim YJ, Chang JG, Polym.(Korea), 13(8), 683 (1989)
  2. Yun SH, Shim JS, Polym.(Korea), 10(4), 373 (1986)
  3. Chung HS, Ph.D. Dissertation, Pusan National University, Pusan (1993)
  4. Roe CP, Ind. Eng. Chem., 60, 20 (1968)
  5. Robb ID, J. Polym. Sci. A: Polym. Chem., 7, 417 (1969) 
  6. Matsumoto T, Ochi A, Kobunshi Kagaku, 22, 481 (1965)
  7. Chang HS, Chen SA, J. Polym. Sci. A: Polym. Chem., 26, 1207 (1988) 
  8. Goodall AR, Wilkinson MC, Hearn J, J. Polym. Sci. A: Polym. Chem., 15, 2193 (1977)
  9. Fitch RM, Prenosil MP, Sprick KJ, J. Polym. Sci. C: Polym. Lett., 27, 95 (1969)
  10. Chung-Li Y, Goodwin JW, Ottewill RH, Prog. Colloid Polym. Sci., 60, 163 (1976)
  11. Lee SY, Sim HS, Shin YJ, Polym.(Korea), 19(6), 883 (1995)
  12. Juang MS, Krieger IM, J. Polym. Sci. A: Polym. Chem., 14, 2089 (1976)
  13. Yu ZZ, Li BG, Cai MJ, Li BF, Cao K, J. Appl. Polym. Sci., 55(8), 1209 (1995) 
  14. Gardon JL, Williams DJ, J. Polym. Sci. A: Polym. Chem., 11, 241 (1973)
  15. Weerts PA, vanderLoos JLM, German AL, Makromol. Chem., 192, 2009 (1991) 
  16. Ono H, Saeki H, Colloid Polym. Sci., 253, 744 (1975)