Biochemical and Biophysical Research Communications, Vol.366, No.3, 814-820, 2008
Endothelial MnSOD overexpression prevents retinal VEGF expression in diabetic mice
We previously proposed that hyperglycemia-induced mitochondrial ROS overproduction is a key event in the development of diabetic complications. In this study, we established a novel transgenic mouse (eMnSOD-Tg), which specifically expressed MnSOD in endothelial cells, by employing a Tie2 promoter/enhancer, and investigated the impact of mitochondrial ROS production on diabetic retinopathy in vivo. Using immunohistochemistry, overexpression of MnSOD in endothelial cells was confirmed in eMnSOD-Tg mice. By introduction of diabetes by streptozotocin, levels of urinary 8-hydroxydeoxyguanosine, a marker of mitochondrial oxidative stress, and expression of VEGF mRNA and protein and fibronectin mRNA in retinas were increased in wild-type littermates. However, these observations were ameliorated in eMnSOD-Tg mice, although control and eMnSOD-Tg mice showed a comparable level of hyperglycemia. In the present study, we newly developed a line of transgenic mice, which specifically express MnSOD in endothelium. In addition, overexpression of mitochondrial-specific SOD in endothelium could prevent diabetic retinopathy in vivo. (c) 2007 Elsevier Inc. All rights reserved.
Keywords:diabetes;diabetic complications;reactive oxygen species;manganese superoxide dismutase;endothelium