화학공학소재연구정보센터
Applied Surface Science, Vol.254, No.9, 2730-2735, 2008
Preparation of Gelatin coated hydroxyapatite nanorods and the stability of its aqueous colloidal
This paper describes a novel process for preparing Gelatin coated hydroxyapatite (HAp) nanorods to improve the stability of its aqueous colloid. As Gelatin is a typical protein with abundant hydroxyls, carboxys and imines, it is a very effective functional group to attach onto the surfaces of the HAp particles. Our data show that the Gelatin layer firmly coated on the hydroxyapatite nanorods, and their structure and interfacial chemical bonding have been studied using various techniques, such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), high-resolution transmission electron microscopy (HRTEM), differential thermal analysis (DTA) and thermal gravimetric analysis (TGA). The reaction temperature, pH, amount of Gelatin, and Ca/P molar ratio in the material determine the quality of Gelatin coating and the stability of the HAp in aqueous solution. Moreover, an interesting phenomenon was found that the Gelatin coated HAp sediment separated by centrifugal was easily dispersed in water and forms HAp aqueous suspension. The suspension was stable for more than 24 h. (c) 2008 Published by Elsevier B.V.