화학공학소재연구정보센터
Polymer(Korea), Vol.21, No.5, 730-736, September, 1997
PPS의 중합에 미치는 N-Cyclohexyl-2-pyrrolidinone 용매 효과
The Effect of N-Cyclohexyl-2-pyrrolidinone as a Solvent on the Polymerization of Poly(phenylene sulfide)
초록
Poly(phenylene sulfide) (PPS)의 상업적 제조에서는 용매로서 N-methyl- 2- pyrrolidinone (NMP)가 사용되어져 왔다. 그러나 본 연구에서는 NMP 보다 끓는점 및 극성이 높은 N-cyclohexyl-2-pyrrolldinone (CHP)를 NMP 대긴 용매로 사용하여 PPS를 제조하였다. 특히 CHP는 금속이온을 효과적으로 용매화시킴으로써 친핵성 반응물의 반응성을 증가시킬 것으로 기대하였다. 즉 CHP를 용매로 이용하였을 때 PPS 중합에 관계하는 반응시간, 물, 반응온도, 단량체의 당량비의 효과를 조사하였다. Phillips 공정을 통한 CHP내에서의 PPS 합성의 최적 조건은 본 성점도와 수율을 함께 고려하여 결정하였다. 그리고 이 결과를 NMP에서의 것과 비교하였다. 그 결과 CHP를 NMP 대신 용매로 사용한 경우 최적 조건에서의 수율은 그다지 증가하지 않았으나, 수율과 점도를 함께 고려할 때 CHP 용매가 NMP보다 더 PPS 합성에 효과적이었다.
N-methyl-2-pyrrolidinone (NMP) has been used in the commercial synthesis of poly(phenylene sulfide) (PPS) as a solvent. In this study, however. we attempted to the synthesis of PPS by using N-cyclohexyl-2-pyrrolidinone (CHP) instead of NMP. CHP has higher boiling point and polarity than NMP Especially, the reactivity in CHP may be ascribed to effective solvation of metal ion rendering the anion very reactive toward nucleophilic substitution. The effect of polymerization time. water contents, polymerization temperature and stoichiometric ratios of monomers on the polymerization behavior of PPS in the CHP were studied. From the study of polymerization behavior In the synthesis of PPS with Phillips process in CHP optimum polymerization condition was determined in view of inherent viscosity and conversion. This result was compared with that of NMP Conclusively, conversion of PPS was not so much promoted in the CHP solvent in each condition. Considering both conversion and viscosity, however, the CHP solvent proved more effective on the polymerization of PPS than the NMP.
  1. Macallum AD, J. Org. Chem., 13, 154 (1948) 
  2. Lenz RW, Handlovits CE, Smith HA, J. Polym. Sci., 58, 351 (1962) 
  3. Edmonds JT, Hill HW, U.S. Patent, 3,354,129 (1967)
  4. Port AB, Still RH, Makromol. Chem., 188, 7 (1987) 
  5. Edmonds JT, Hill HW, U.S. Patent, 3,524,835 (1970)
  6. Scoggin JS, U.S. Patent, 3,793,256 (1974)
  7. Campbell RW, Yelton HD, U.S. Patent, 4,024,118 (1977)
  8. Yamamoto K, Shouji E, Nishide H, Tscuhda E, J. Am. Chem. Soc., 115, 5819 (1993) 
  9. Tsuchida E, Suzuki F, Shouji E, Yamamoto K, Macromolecules, 27(4), 1057 (1994) 
  10. Tsuchida E, Yamamoto K, Oyaizu K, Suzuki F, Hay AS, Wang ZY, Macromolecules, 28(2), 409 (1995) 
  11. Wang YF, Chan KP, Hay AS, Macromolecules, 28(18), 6371 (1995) 
  12. Durvasula VR, Stuber FA, Bhattacharjee D, J. Polym. Sci., 27, 661 (1989)
  13. Tsuchida E, Yamamoto K, Jikei M, Nishida H, Macromolecules, 22, 4140 (1989) 
  14. Tsuchida E, Yamamoto K, Jikei M, Nishida H, Jikei M, Macromolecules, 23, 930 (1990) 
  15. Koch W, Heitz W, Makromol. Chem., 184, 779 (1983) 
  16. Koch W, Risse W, Heitz W, Makromol. Chem., 12, 105 (1985) 
  17. Fahey DR, Ash CE, Macromolecules, 24, 4242 (1991) 
  18. Koschinski I, Reichert KH, Makromol. Chem. Rapid Commun., 9, 291 (1988) 
  19. Fahey DR, Hemsley HD, Ash CE, Senn DR, Polym. Mater. Sci. Eng., 468 (1992)
  20. Iizuka Y, Iwasaki T, Katto T, Shiiki Z, U.S. Patent, 4,645,826 (1987)
  21. Ito M, Onda M, Ona S, Inoue H, Bull. Chem. Soc. Jpn., 63, 1484 (1990)