화학공학소재연구정보센터
Electrochimica Acta, Vol.53, No.12, 4096-4103, 2008
An inorganic/organic self-humidifying composite membranes for proton exchange membrane fuel cell application
With an aim to operate the proton exchange membrane fuel cells (PEMFCs) with dry reactants, an inorganic/organic self-humidifying membrane based on sulfonated polyether ether ketone (SPEEK) hybrid with Cs2.5H0.5PW12O40 supported Pt catalyst (Pt-Cs2.5 catalyst) has been investigated. The Pt-Cs2.5 catalysts incorporated in the SPEEK matrix provide the site for catalytic recombination of permeable H-2 and O-2 to form water, and meanwhile avoid short circuit through the whole membrane due to the insulated property Of Cs2.5H0.5PW12O40 support. Furthermore, the Pt-Cs2.5 catalyst can adsorb the water and transfer proton inside the membrane for its hygroscopic and proton-conductive properties. The structure of the SPEEK/Pt-Cs2.5 composite membrane was characterized by XRD, FT-IR, SEM and EDS. Comparison of the physicochemical and electrochemical properties, such as ion exchange capacity (IEC), water uptake and proton conductivity between the plain SPEEK and SPEEK/Pt-Cs2.5 composite membrane were investigated. Additive stability measurements indicated that the Pt-Cs2.5 catalyst showed improved stability in the SPEEK matrix compared to the PTA particle in the SPEEK matrix. Single cell tests employing the SPEEK/Pt-Cs2.5 self-humidifying membrane and the plain SPEEK membrane under wet or dry operation conditions and primary 100 h fuel cell stability measurement were also conducted in the present study. (c) 2007 Elsevier Ltd. All rights reserved.