화학공학소재연구정보센터
Chemical Engineering Science, Vol.63, No.8, 2035-2046, 2008
Modeling of branching density and branching distribution in low-density polyethylene polymerization
Low-density polyethylene (IdPE) is a general purpose polymer with various applications. By this reason, many publications can be found on the WE polymerization modeling. However, scission reaction and branching distribution are only recently considered in the modeling studies due to difficulties in measurement and computation of scission effect and branchings of polymer. Our previous papers [Kim, D.M., et al., 2004. Molecular weight distribution modeling in low-density polyethylene polymerization; impact of scission mechanisms in the case of CSTR. Chemical Engineering Science 59, 699-718; Kim, D.M., Iedema, P.D., 2004. Molecular weight distribution modeling in low-density polyethylene polymerization; impact of scission mechanisms in the case of a tubular reactor. Chemical Engineering Science, submitted for publication] are concerned with the scission reaction during WE polymerization and its effect on molecular weight distribution (MWD) of WPE for various reactor types. Here we consider branching distributions as a function of chain length for CSTR and tubular reactor processes. To simultaneously deal with chain length and branching distributions, the concept of pseudo-distributions is used, meaning that branching distributions are described by their main moments. The computation results are compared with properties of WPE samples from a CSTR and a tubular reactor. Number and weight average branchings and branching density increase as chain length increases until the longest chain length. The concentrations of long chain branching (LCB) are close to those of first branching moment in both CSTR and tubular reactor systems. The branching dispersity, a measure for the width of the branching distribution at a certain chain length, has the highest value at shorter chain length and then monotonously decreases approaching to 1.0 as chain length increases. Excellent agreements in branching dispersities between calculation with branching moments and prediction with assumption of binomial distribution for a tubular reactor and CSTR processes show that the branching distribution follows a binomial distribution for both processes. (C) 2007 Elsevier Ltd. All rights reserved.