Chemical Engineering Science, Vol.63, No.4, 1039-1051, 2008
Iterative learning reliable control of batch processes with sensor faults
An iterative learning reliable control (ILRC) scheme is developed in this paper for batch processes with unknown disturbances and sensor faults. The batch process is transformed into and treated as a two-dimensional Fornasini-Marchesini (2D-FM) model. Under the proposed control law, the closed-loop system with unknown disturbances and sensor faults not only converges along both the time and the cycle directions, but also satisfies certain H infinity performance. For performance comparison, a traditional reliable control (TRC) law based on dynamic output feedback is also developed by considering the batch process in each cycle as a continuous process. Conditions for the existence of ILRC scheme are given as biaffine and linear matrix inequalities. Algorithms are given to solve these matrix inequalities and to optimize performance indices. Applications to injection packing pressure control show that the proposed scheme can achieve the design objectives well, with performance improvement along both time and cycle directions, and also has good robustness to uncertain initialization and measurement disturbances. (c) 2007 Elsevier Ltd. All rights reserved.
Keywords:sensor fault;reliable control;iterative learning control;batch process;linear matrix inequality (LMI);2D Fornasini-Marchesini model