Biotechnology and Bioengineering, Vol.99, No.3, 614-624, 2008
A study of the influence of yeast cell debris on protein and alpha-glucosidase adsorption at various zones within the expanded bed using in-bed sampling
Expanded bed adsorption chromatography is used to capture products directly from unclarified feed-stocks, thus combining solid-liquid separation, product concentration and preliminary purification into a single Step. However, when non-specific ion-exchangers are used as the adsorbent in the expanded bed, there is the possibility that electrostatic interactions of cells or cell debris with the adsorbent may interfere with the adsorption of soluble products. These interactions depend on the particle size of the cell debris and its surface charge, which in turn depend on the extent of disruption used to release the intracellular products. The interactions occurring during expanded bed adsorption between the anionic ion-exchanger STREAMLINE DEAE and particulate yeast homogenates obtained by high pressure homogenisation at different intensities of disruption achieved by operating at different pressures were studied, while maintaining all other parameters constant. In-bed sampling from the expanded bed using ports fitted up the height of expanded bed was used to study the retention of yeast cells and cell debris within the bed and its influence on the adsorption of total soluble protein and a-glucosidase within various zones of the expanded bed. The retention of the biomass present in the homogenate obtained at a lower intensity of disruption was found to be high at the lower end of the column (17% from 13.8 MPa sample compared to 1% from 41.4 MPa sample). This interaction of the particulate material with the adsorbent was found to reduce the dynamic binding capacity of the adsorbent for total soluble protein from 3.6 mg/mI, adsorbent for 41.4 MPa sample to 3.0 mg/mL adsorbent for 13.8 MPa sample. The adsorption of a-glucosidase was found to increase with an increase in the concentration of the enzyme in the feed, which-increased with the intensity of disruption. Selective adsorption of 6,732 U a-glucosidase per mg of total protein bound, was noticed for the feedstock prepared at a higher disruption intensity at 41.4 MPa compared to adsorption of 1,262 U/mg of total protein bound for that prepared at 13.8 MPa. The selective adsorption of a-glucosidase due to its high concentration together with simultaneous high specific activity of the enzyme in the feed indicated the significance of selective release of enzymes during microbial cell disruption for efficient expanded bed adsorption processes.
Keywords:expanded bed chromatography;yeast cell debris;process interaction;in-bed sampling;cell disruption