화학공학소재연구정보센터
Polymer, Vol.48, No.24, 7041-7048, 2007
Synthesis and characterization of amphiphilic conetworks based on multiblock copolymers
Model amphiphilic conetworks based on cross-linked block copolymers of the hydrophilic ionizable 2-(dimethylamino)ethyl methacrylate (DMAEMA, 25 nominal units per block) and the hydrophobic n-butyl methacrylate (BuMA, 5 nominal units per block) hearing three, five, seven and nine blocks were synthesized using group transfer polymerization. 1,4-Bis(methoxytrimethylsiloxymethylene)cyclohexane and ethylene glycol dimethacrylate were used as the bifunctional initiator and the cross-linker, respectively. Network synthesis was performed by sequential monomer/cross-linker additions to the reaction flask, which was pre-loaded with tetrabutylammonium bibenzoate (polymerization catalyst), tetrahydrofuran (THF, solvent), and initiator. All linear conetwork precursors were characterized using gel permeation chromatography and proton nuclear magnetic resonance spectroscopy and found to have molecular weights (MWs) and compositions reasonably close to the theoretically expected values. All polymer conetworks were characterized in terms of their degree of swelling (DS) in THF, in neutral water, and in aqueous media as a function of the solution pH. It was found that the DSs were highest in acidic pH due to the repulsive forces and the osmotic pressure developed by the ionization of the DMAEMA units. Intermediate values of the DSs were observed in THF, whereas the lowest DSs were measured in neutral water. In THE, the DSs increased with the MWs of the (final) linear (co)polymer precursors, while in acidic water the DSs increased with the DMAEMA content in the (co)networks. (C) 2007 Elsevier Ltd. All rights reserved.