Macromolecules, Vol.41, No.3, 691-700, 2008
Processable, electroactive, and aqueous compatible poly(3,4-alkylenedioxypyrrole)s through a functionally tolerant delodination condensation polymerization
We present a method for the synthesis of soluble and processable 3,4-alkylenedioxypyrrole (XDOP)-based conjugated polymers via an iododecarboxylation-deiodination polymerization methodology. Polymerization to the respected PXDOP derivatives of suitably high molecular weight (3.8-14.2 kDa vs polystyrene as measured by GPQ was achieved by either heating the neat monomers for a few hours or allowing them to remain at room temperature for several days. A family of four polymers was synthesized and characterized optically and electrochemically. Polymer solutions were transparent in the visible in their neutral states, red in their partially oxidized states, and grayish-green in their heavily oxidized states. Electrochemical measurements of cast films show that all redox processes occur at low potentials (ca. 0 V vs the Fc/Fc(+)), similar to electrodeposited films. Polymers spray-cast as films onto ITO exhibited high band gaps above 3.0 eV along with stable UV and near-IR electrochromism in organic solvents with almost no change in the visible. An amphiphilic polymer functionalized with oligoethoxy substituents exhibited enhanced electrochemistry in aqueous electrolyte and high-contrast electrochromism with respect to the nonpolar functionalized polymers in the visible and near-IR.