Langmuir, Vol.24, No.7, 3171-3180, 2008
Adsorption of multiple ammonium salts at the air/solution interface
The interfacial behavior of aqueous solutions of newly synthesized bis-and tris-ammonium salts (i.e., bis[2-hydroxy-3-(dodecyldimethylammonio)propyl]alkylamine dichlorides and bis[2-hydroxy-3-(dodecyldimethylammonio)propyl]dialkylammmonium trichlorides, respectively) was analyzed, both experimentally and theoretically. The dynamic and equilibrium surface tension of multiple ammonium salt solutions was measured by using a pendant drop shape analysis method. The determined surface tension isotherms indicated the lack of significant differences in surface activity between bis- and tris-ammonium salts, contrary to the expectations for divalent and trivalent surfactant ions. That effect was explained by assuming the formation of multiple surfactant ion-counterion associates. Taking into account the association process, a good correlation between experimental data and theoretical predictions was obtained by means of the "surface quasi two-dimensional electrolyte" (STDE) model of ionic surfactant adsorption. The degree of association necessary to explain the lack of difference in surface activity between bis- and tris-ammonium salts was in quantitative agreement with the results of measurements of the concentration of free chloride anions in the surfactant solution.