화학공학소재연구정보센터
Langmuir, Vol.24, No.5, 1801-1807, 2008
Design and synthesis of novel magnetic core-shell polymeric particles
A novel synthetic strategy was developed for the preparation of magnetic core-shell (MCS) particles consisting of hydrophobic poly(methyl methacrylate) cores with hydrophilic chitosan shells and gamma-Fe2O3 nanoparticles inside the cores via copolymerization of methyl methacrylate from chitosan in the presence of vinyl-coated gamma-Fe2O3 nanoparticles. The magnetic core-shell particles were characterized with transmission electron microscopy, field-emission scanning electron microscopy, particle size and zeta-potential measurements, vibrating sample magnetometry, and atomic force microscopy, respectively. The MCS particles were less than 200 nm in diameter with a narrow size distribution (polydispersity = 1.09) and had a good colloidal stability (critical coagulation concentration = 1.2 M NaCl at pH 6.0). Magnetization study of the particles indicated that they exhibited superparamagnetism at room temperature and had a saturation magnetization of 2.7 A m(2)/kg. The MCS particles were able to form a continuous film on a glass substrate, where magnetic nanoparticles could evenly disperse throughout the film. Thus, these new materials should be extremely useful in various applications.