Journal of Vacuum Science & Technology B, Vol.26, No.1, 391-395, 2008
Antimony for n-type metal oxide semiconductor ultrashallow junctions in strained Si: A superior dopant to arsenic?
The creation of stable, highly conductive ultrashallow junctions in strained Si is a key requirement for future Si based devices. It is shown that in the presence of tensile strain, Sb becomes a strong contender to replace As as the dopant of choice due to advantages in junction depth, junction steepness, and crucially, sheet resistance. While 0.7% strain reduces resistance for both As and Sb, a result of enhanced electron mobility, the reduction is significantly larger for Sb due to an increase in donor activation. Differential Hall and secondary-ion mass spectroscopy measurements suggest this to be a consequence of a strain-induced Sb solubility enhancement following epitaxial regrowth, increasing Sb solubility in Si to levels approaching 10(21) cm(-3). Advantages in junction depth, junction steepness, and dopant activation make Sb an interesting alternative to As for ultrashallow doping in strain-engineered complementary metal-oxide semiconductor devices. (c) 2008 American Vacuum Society.