Journal of Vacuum Science & Technology B, Vol.25, No.6, 1789-1793, 2007
Development of chemical-mechanical polished high-resolution zone plates
State-of-the-art zone plates for soft and hard x rays are commonly fabricated in nickel or gold by electroplating. The most critical fabrication step is the controlled filling of the plating mold, which directly affects the performance of the diffractive optics. One problem is that the electroplating rate depends on the actual zone width resulting in an inhomogeneous height profile across the optics. Another problem is the measurement of the actual zone height during the electroplating process to fill exactly the plating mold. In practice, underplating the mold results in a low diffraction efficiency of the zone plate. Overplating yields in unemployable optics. In this article, the authors apply a chemical-mechanical polishing (CMP) process to overcome the described problems. In the new processing step, the zone plate is planarized after overplating. The authors demonstrate for the first time that nickel zone plates with an outermost zone width down to 25 nm can be polished by applying a CMP process. This new step leads to a much better reproducibility in zone plate fabrication and their performance. In addition, to overcome the technical limit of the current aspect ratios of zone plates the authors propose to superimpose polished zone plate layers on top of each other. The authors assume that the introduced CMP process paves the way toward the development of future volume zone plates with ultrahigh aspect ratios for soft and hard x-ray applications. (C) 2007 American Vacuum Society.