Journal of Crystal Growth, Vol.310, No.1, 214-220, 2008
Effects of the Li-evaporation on the czochralski growth of gamma-LiAlO2
Two-inch-diameter gamma-LiAlO2 single crystals were grown from the melt by Czochralski method. The crystals were examined by optical methods, high-resolution X-ray diffraction and transmission electron microscopy (TEM). Inductively coupled plasma optical emission spectrometry (ICP-OES) was used to determine the Li/Al ratio in the residual melts. The Li-evaporation from both melt and grown crystal is the main problem in the gamma-LiAlO2 growth and has to be controlled by acting on the vertical temperature gradient. Shallow gradients increase the Li-evaporation from the crystal surface resulting in boules with a milky rim. On the other hand, steep gradients may induce cracks in the boule and enhance the Li2O escape from melt with consequent variation of the composition. ICP-OES investigations reveal that melt compositions can vary in the range from 46.5 to 50mol% Li2O to obtain transparent LiAlO2 crystals. Beyond this value, the formation of inclusions inside the crystals is probable. We have established an optimized growth assembly, which allows remaining the melt composition stoichiometric. The as-grown crystals exhibit defects like subgrains, twins and a core of voids and fine-grained inclusions. The latter could be characterized by TEM as submicron LiAl5O8 crystallites. (c) 2007 Elsevier B.V. All rights reserved.