Journal of Power Sources, Vol.175, No.2, 861-865, 2008
Study on carbon nanotube reinforced phenol formaldehyde resin/graphite composite for bipolar plate
Using carbon nanotubes (CNTs) after different Fenton treatments as a reinforcement and a phenol formaldehyde resin/graphite (PF/G) composite as matrix, a new composite for bipolar plate was formed by hot-pressing. The effects of Fenton, Fenton/ultrasonic and Fenton/ultraviolet treatments on the surface of the CNTs, and the bend strength and conductivity of bipolar plate composite produced using them were investigated. It was found that Fenton/UV treatment was an effective and advanced oxidation process, which could generate a large quantity of hydroxyl groups and few carboxyl groups on the sidewalls of the CNTs, but without severe damage. The functional groups on CNTs after Fenton/ultraviolet treatment can improve the interfacial adhesion between CNTs and matrix, which can improve the bend strength, but does not play an important role in the improvement of the conductivity. The bend strength and conductivity of the composite with 3% CNTs after Fenton/ultraviolet treatment are 68.6 MPa and 145.2 s cm(-1), respectively, when pressed at 240 degrees C for 60 min. (C) 2007 Elsevier B.V. All rights reserved.