화학공학소재연구정보센터
Journal of Polymer Science Part B: Polymer Physics, Vol.46, No.4, 359-369, 2008
Electrical and dielectric properties in carbon fiber-filled LMWPE/UHMWPE composites with different blend ratios
Carbon fiber (CF) filled low-molecular-weight polyethylene (LMWPE) and ultra-high molecular weight polyethylene (UHMWPE) composites were prepared by the gelation from solution and the kneading in the melting state. The content of carbon fibers was fixed to be 23.5 vol %. The resistivity, positive temperature coefficient (PTC), and dielectric behaviors of the composites became more pronounced with increasing content of LMWPE with much higher thermal expansion than that of UHMWPE. The PTC effect became most significant, when the blend ratio of LMWPE to UHMWPE was 9/1. Beyond 9/1, the PTC effect was less pronounced. Scanning electron microscopy (SEM) and differential scanning calorimetry (DSC) revealed that the UHMWPE and LMWPE chains within the composite crystallized independently by gelation from solution and were virtually unaffected by the presence of carbon fibers. Consequently, it was confirmed that carbon fibers selectively were localized in the mixed region of LMWPE and UHMWPE for the composite (3/1 and 6/1) and mainly in the region of LMWPE for the 9/1, 12/1, and 15/1 composites. This indicated that the content of carbon fibers within LMWPE region was the highest for the 9/1 composite and the 9/1 composite provides the most significant PTC effect. (c) 2008 Wiley Periodicals, Inc.