화학공학소재연구정보센터
Polymer(Korea), Vol.20, No.5, 877-884, September, 1996
2단계 유화중합법에 의한 Acrylate-Styrene-Acrylonitrile 삼원공중합체의 합성 및 분석
Synthesis and Characterization of Acrylate-Styrene-Acrylonitrile Terpolymer by Two Stage Emulsion Polymerization
초록
Seed 라텍스로 methyl acrylate와 butyl acrylate를 사용하여 ASA (acrylate-styrene- acrylonitrile) 삼원공중합체를 2단계 유화중합법에 의하여 합성하였다. Seed 라텍스 종류에 따라 중합속도 및 최대전환율이 달리 나타났으며 중합거동에 영향을 미치는 개시제 농도, 중합 온도와 seed latex/SAN 무게비 등 인자들을 살펴보았다. 합성된 ASA 삼원공중합체를 FTIR과 NMR분석을 통하여 확인하였으며 styrene domain index를 계산하여 상분리를 추정하였다. TEM을 이용하여 삼원공중합체 라텍스 입자의 형태를 관찰한 결과 SAN 함량 증가에 따라 polymeric oil-in-oil 구조에서 core shell 구조로 전이를 나타냈다. ASA 삼원공중합체의 열분석을 통하여 아크릴레이트 종류 및 acrylate/SAN 비에 따른 유리전이온도 변화를 살펴보고 차이점을 상분리와 연관시켜 설명 하였다.
ASA (acrylate-styrene-acrylonitrile) terpolymers were synthesized by using two-stage emulsion polymerization technique. Methyl and butyl acrylate were used as a acrylate seed latex in terpolymerization. The polymerization rate and maximum conversion percentage were different depending on the seed latex used in emulsion polymerization. The initiator concentration, polymerization temperature and seed latex/SAN ratio were examined as parameters affecting the polymerization behaviour. The structure of synthesized ASA terpolymers was confirmed by FTIR and NMR spectroscopy. The styrene domain index was calculated, indicating that the phase separation was obserbed in ASA terpolymers. As a result of morphological examination using TEM, the phase transition was occured from polymeric oil-in-oil to core shell structure as a increase of ASN content in terpolymer. The glass transition temperature was changed depending on different carylate seed latex and acrylate/SAN ratio. The thermal behaviour can be explained in relation to the phase separation of terpolymer.
  1. Brydson JA, "Plastics Materials," p. 413, Butterworth Scientific, London (1989)
  2. Manson JA, Spering LH, "Polymer Blends and Composites," p. 117, Plenum Press, New York and London (1976)
  3. Yu J, U.S. Patent, 3,944,631 (1981)
  4. Ogawa M, Takazow S, Jpn. Plast. Age, 11, 39 (1973)
  5. Morimoto M, J. Appl. Polym. Sci., 26, 261 (1981) 
  6. Dean BD, Elastomer Plast., 17, 55 (1985)
  7. Utraki LA, "Polymer Alloys and Blends," Hanser Publisher, New York (1990)
  8. Lee S, Rudin A, "Polymer Latex," eds. by E.S. Danniels et al., p. 234, American Chemical Society, Washington D.C. (1992)
  9. Sawyer LC, Grubbed DT, "Polymer Microscopy," p. 103, Chapmand and Hall, London (1987)
  10. Evands DL, Weaver JL, Kukherji AK, Beatty CL, Anal. Chem., 50, 8578 (1978)
  11. Devon MJ, Rudin A, J. Polym. Sci. A: Polym. Chem., 24, 2191 (1986) 
  12. Wunderlich B, "Thermal Characterization of Polymer Materials," ed. by E.A. Turi, p. 165, Academic Press, New York (1993)