Journal of Physical Chemistry B, Vol.112, No.4, 1293-1298, 2008
Quantum mechanical calculations on selectivity in the KcsA channel: The role of the aqueous cavity
We have carried out quantum calculations on selected residues at the intracellular side of the selectivity filter of the KcsA potassium channel, using the published X-ray coordinates as starting points. The calculations involved primarily the side chains of residues lining the aqueous cavity on the intracellular side of the selectivity filter, in addition to water molecules, plus a K+ or Na+ ion. The results showed unambiguously that Na+ significantly distorts the symmetry of the channel at the entrance to the selectivity filter (at the residue T75), while K+ does so to a much smaller extent. In all, three ion positions have been calculated: the S4 (lowest) position at the bottom of the selectivity filter, the top of the cavity, and the midpoint of the cavity; Na+ is trapped at the cavity top, while K+ is cosolvated by the selectivity filter carbonyl groups plus threonine hydroxyl groups so that it can traverse the filter. Only one water molecule remains in the K+ solvation shell at the upper position in the cavity; this solvation shell also contains four threonine (T75) hydroxyl oxygens and two backbone carbonyls, while Na+ is solvated by five molecules of water and one oxygen from threonine hydroxyls. T75 at the entrance to the selectivity filter has a key role in recognition of the alkali ion, and T74 has secondary importance. The energetic basis for the preferential bonding of potassium by these residues is briefly discussed, based on additional calculations. Taken together, the results suggest that Na+ would have difficulty entering the cavity, and if it did, it would not be able to enter the selectivity filter.