Journal of Physical Chemistry B, Vol.111, No.51, 14355-14361, 2007
Adsorption-induced conformational changes of antifreeze glycoproteins at the ice/water interface
The conformation of antifreeze glycoprotein (AFGP) molecules adsorbed at the ice/water interface was studied by attenuated total reflection (ATR)-FIFIR spectroscopy. Measurements were carried out for AFGP/D2O solution films formed on the surface of an ATR prism as a function of temperature. Using the FTIR spectrum from the O-D stretching band of D2O molecules, we monitored the supercooled and frozen states of the film and measured the thickness of the quasi-liquid layer (QLL) at the ice/prism interfaces. The AFGP structure was determined for the liquid, supercooled, and frozen states of the solution film using the amide I band spectra. No noticeable differences in conformation were observed in the solution conformation from room temperature down to the 15 K supercooling studied, whereas the (x-helical content of AFGP suddenly increased when the supercooled solution film froze at -15 degrees C. This change in conformation can increase the overall interaction between the AFGP molecules and ice surface and allow a stronger adsorption. In contrast, the alpha-helical content of AFGP in the frozen film gradually decreased with increasing temperature and finally returned to its solution-state level at the melting point of D2O ice. This gradual decrease in the (x-helix content directly correlates with the measured increase in QLL thickness. Finally, we conclude that the differences in the a.-helix signals between the frozen and supercooled states indicate the conformational change of AFGP molecules upon adsorption at the ice/water interface, emphasizing the importance of the structure-function relationship, even for this highly flexible antifreeze.