화학공학소재연구정보센터
Journal of Physical Chemistry A, Vol.112, No.2, 312-321, 2008
Intramolecular hydrogen bonding and cooperative interactions in carbohydrates via the molecular tailoring approach
In spite of many theoretical and experimental attempts for understanding intramolecular hydrogen bonding (H-bonding) in carbohydrates, a direct quantification of individual intramolecular H-bond energies and the cooperativity among the H-bonded networks has not been reported in the literature. The present work attempts, for the first time, a direct estimation of individual intramolecular O-H center dot center dot center dot O interaction energies in sugar molecules using the recently developed molecular tailoring approach (MTA). The estimated H-bond energies are in the range of 1.2-4.1 kcal mol(-1). It is seen that the OH center dot center dot center dot O equatorial-equatorial interaction energies lie between 1.8 and 2.5 kcal mol(-1), with axial-equatorial ones being stronger (2.0-3.5 kcal mol(-1)). The strongest bonds are nonvicinal axial-axial H-bonds (3.0-4.1 kcal mol(-1)). This trend in H-bond energies is in agreement with the earlier reports based on the water-water H-bond angle, solvent-accessible surface area (SASA), and H-1 NMR analysis. The contribution to the H-bond energy from the cooperativity is also estimated using MTA. This contribution is seen to be typically between 0.1 and 0.6 kcal mol(-1) when H-bonds are a part of a relatively weak equatorial-equatorial H-bond network and is much higher (0.5-1.1 kcal mol(-1)) when H-bonds participate in an axial-axial H-bond network.