화학공학소재연구정보센터
Journal of Physical Chemistry A, Vol.111, No.50, 13038-13045, 2007
Manipulation and characterization of aqueous sodium dodecyl sulfate/sodium chloride aerosol particles
Aerosol optical tweezers coupled with Raman spectroscopy can allow the detailed investigation of aerosol dynamics. We describe here measurements of the evolving size, composition, and phase of single aqueous aerosol droplets containing the surfactant sodium dodecyl sulfate and the inorganic salt sodium chloride. Not only can the evolving wet particle size be probed with nanometer accuracy, but we show that the transition to a metastable microgel particle can be followed, demonstrating that optical tweezers can be used to manipulate both spherical and non-spherical aerosol particles. Further, through the simultaneous manipulation and characterization of two aerosol droplets of different composition in two parallel optical traps, the phase behavior of a surfactant-doped particle and a surfactant-free droplet can be compared directly in situ. We also illustrate that the manipulation of two microgel particles can allow studies of the coagulation and interaction of two solid particles. Finally, we demonstrate that such parallel measurements can permit highly accurate comparative measurements of the evolving wet particle size of a surfactant-doped droplet with a surfactant-free droplet.