화학공학소재연구정보센터
Enzyme and Microbial Technology, Vol.19, No.8, 606-613, 1996
Growth of Gram-Negative Bacteria in the Presence of Organic-Solvents
The growth behavior of Gram-negative bacteria when exposed to high concentrations (50% v/v) of water-insoluble organic solvents was investigated. The solvents were chosen according to their polarity values as denoted bg a logarithmically expressed parameter log P, where P is the partition coefficient of a given solvent in an equimolar mixture of octanol and water. The cell growth was measured by the number of colonies developed on a solid agar medium in direct contact with the solvents. All 31 strains tested showed characteristic growth patterns. The survival and subsequent growth of bacteria increased with the increase in the log P value and was found to be strain specific. For all the strains 100% cell growth war reached from 0% within 0.1-0.4 log P units. Log P-50 values, defined as the log P values at which 50% of the cells form colonies, were determined for each bacterial strain. On the whole, Pseudomonas strains were found to be more resistant to apolar solvents than all other bacteria tested. This resistance was dependent not only on the polarities but also on the toxic nature of different organic solvents, the cell membrane components, and to a limited extent, the growth medium. A tenfold increase in the Mg2+ concentration in the growth medium enhanced the solvent resistance of E. coli but had no such effect on Pseudomonads. In general, different growth temperatures had no impact on the solvent resistance of the Gram-negative bacteria tested.