화학공학소재연구정보센터
Journal of Materials Science, Vol.43, No.2, 715-720, 2008
Thermal stability of heat-treated flame-synthesized anatase TiO2 nanoparticles
In this article, TiO2 nanoparticles were synthesized by using O-2-enriched coflow, hydrogen, diffusion flames. We investigated the thermal stability of the flame-synthesized TiO2 nanoparticles by examining the crystalline structures of the nanoparticles and by analyzing the photocatalytic degradations of methylene blue solutions. Also, the results were compared with those of commercial P-25 nanoparticles. The maximum centerline temperature of the flame was measured to be 1,743 degrees C. Under this synthesis condition, TiO2 nanoparticles, which were spherical with diameters approximately ranging from 30 to 60 nm, were synthesized. From the XRD analyses, about 96 wt.% of the synthesized nanoparticles were anatase-phase. After the heat-treatment at 800 degrees C for 30 min, the synthesized TiO2 nanoparticles showed no significant changes of their shapes and crystalline phases. On the other hand, most of the commercial particles sintered with each other and changed to the rutile-phase. Whereas the photocatalytic ability of heat-treated commercial particles deteriorated, that of the flame-synthesized particles improved. On the basis of the improved result of photocatalytic degradation of methylene blue by using the heat-treated flame-synthesized nanoparticles, it is believed that the flame-synthesized TiO2 nanoparticles have higher thermal stability at 800 degrees C than the commercial particles.