화학공학소재연구정보센터
Polymer(Korea), Vol.33, No.5, 441-445, September, 2009
P(MAA-co-PEGMA) 수화젤의 조성과 탑재 pH가 화장품 활성물질의 탑재효율에 미치는 영향
Effect of P(MAA-co-PEGMA) Hydrogel Compositions and Loading pH on the Loading Efficiency of Cosmetic Active Agents
E-mail:
초록
본 연구에서는 알부틴, ascorbic acid, 아데노신 등과 같은 화장품 활성물질들을 주변 pH 변화에 따라서 선택적으로 방출하게 하는 지능형 전달시스템을 개발하기 위하여, pH 감응성 P(MAA-co-PEGMA) 수화젤을 분산 광중합을 이용하여 평균 크기 약 2 μm의 구형 입자로 합성하였으며, 수화젤 입자는 수화젤의 pKa인 pH 5를 전후로하여 급격한 팽윤비의 변화를 보여주었다. P(MAA-co-PEGMA) 수화젤에 대한 활성물질들의 탑재에 영향을 미치는 요인들을 알아내기 위하여, 수화젤의 MAA와 EG의 조성과 탑재 pH에 따른 활성물질들의 탑재효율을 조사하였다. 수화젤을 구성하는 MAA와 EG의 조성 중 MAA의 함량이 감소함에 따라서 활성물질들의 탑재효율이 증가하였으며, 탑재 pH에 따른 실험에서는 수화젤과 활성물질들 사이에 형성되는 정전기적 반발력이 최소가 되는 pH보다는 수화젤의 팽윤비가 높게 되는 pH에서 탑재효율이 더 높게 나타났다.
In order to develop an intelligent delivery system for cosmetic active agents (e.g., arbutin, ascorbic acid, and adenosine), pH-responsive P(MAA-co-PEGMA) hydrogel particles having an average size of approx. 2 μm and spherical shape were synthesized via dispersion photopolymerization. There was a drastic change in the swelling ratio of P(MAA-co-PEGMA) hydrogels at a pH 5, which is the pKa of the hydrogel. To determine the factors that have an effect on the loading of cosmetic active agents into the hydrogel, the loading efficiency of the active agents was investigated at various MAA and EG compositions of the hydrogel and the loading pH conditions. When the MAA contents in the hydrogel decreased, the loading efficiency of the active agents increased. In loading experiments with different pH conditions, the active agents showed higher loading efficiency into the hydrogel at the pH where the hydrogel was at the swollen state than at the pH where the electrostatic repulsion was minimized.
  1. Lee YW, Hwang YI, Lee SC, Korean Journal of Food Science and Technology, 31, 280 (1999)
  2. Deutsch JC, J. Chromatogr. A, 881, 299 (2000)
  3. Muth GW, Ortoleva-Donnelly L, Strobel SA, Science, 289, 947 (2000)
  4. Nawarak J, Huang-Liu R, Kao S, Liao H, Sinchaikul S, Chen S, Cheng S, Biochim. et Biophys. Acta, 1794, 159 (2009)
  5. Kanjickal D, Lopina S, Evancho-Chapman MM, Schmidt S, Donovan D, J. Biomed. Mater. Res., 74A, 454 (2005)
  6. Donni C, Robinsion DN, Colombo P, Giordano F, Peppas NA, Int. J. Pharm., 245, 83 (2002)
  7. Ostroha J, Pong M, Lowman A, Dan N, Biomaterials, 25, 4345 (2004)
  8. Kopecek J, Biomaterials, 28, 5185 (2007)
  9. He H, Cao X, Lee LJ, J. Control. Release, 95, 391 (2004)
  10. Qui Y, Park KN, Adv. Drug Deliv. Rev., 53, 321 (2001)
  11. Morishita M, Lowman AM, Takayama K, Nagai T, Peppas NA, J. Control. Release, 81, 25 (2002)
  12. Kim B, La Flamme K, Peppas NA, J. Appl. Polym. Sci., 89(6), 1606 (2003)
  13. Kim B, Peppas NA, Int. J. Pharm., 266, 29 (2003)
  14. Kim B, Peppas NA, Polymer, 44(13), 3701 (2003)
  15. Beyer P, Nordmeier E, Eur. Polym. J., 35, 1351 (1999)
  16. Bartil T, Bounekhel M, Cedric C, Jerome R, Acta Pharm., 57, 301 (2007)
  17. Shin Y, Kim KS, Kim B, Polym.(Korea), 32(5), 421 (2008)
  18. Kim BS, Shin YC, J. Appl. Polym. Sci., 105(6), 3656 (2007)
  19. Merck 13th Edition, 778.
  20. Merck 13th Edition, 837.