Polymer(Korea), Vol.33, No.5, 407-412, September, 2009
PEDOT-PSS/NPD-C60 정공 주입/수송 층이 도입된 유기발광소자의 성능 향상 연구
Enhanced Efficiency of Organic Electroluminescence Diode Using PEDOT-PSS/NPD-C60 Hole Injection/Transport Layers
E-mail:
초록
발광소자(OLED)에서 정공 수송층(hole injection layer, HIL)으로 사용되는 N,N′-di-1-naphthyl-
N,N′-diphenyl-1,1′-biphenyl-4,4′-diamine (NPD)가 정공 주입층(hole injection layer, HIL)으로 사용된 PEDOT-PSS 층 위로 진공 증착되었다. PEDOT-PSS 층은 ITO 유리 위에 스핀 코팅되어 제조되었다. 또한, NPD와 C60의 공증착에 의해 C60이 약 10 wt% 도핑된 NPD-C60 층을 제조하였으며, AFM과 XRD를 이용하여 NPDC60 박막의 모폴로지 특성을 관찰하였다. 다층 소자를 제조하여 J-V, L-V 및 전류 효율 특성이 고찰되었다. C60 박막은 국부적인 결정성 구조를 가지고 있으나, NPD-C60 박막에서는 C60 분자가 균일하게 분산되어 C60의 결정성 구조가 확인되지 않았다. 또한, C60의 도핑에 의해서 박막의 표면이 균일해지는 것을 확인하였으며, 박막 내의 전류 밀도가 증가됨을 확인하였다. NPD-C60 박막을 이용하여 ITO/PEDOT-PSS/NPD-C60/Alq3/LiF/Al 다층 소자를 제조하였을 때, 소자의 휘도 측면에서 약 80% 향상 효과가 있었으며, 소자 효율 측면에서도 약 25%의 향상을 기대할 수 있었다.
Vacuum deposited N,N′-di-1-naphthyl-N,N′-diphenyl-1,1′-biphenyl-4,4′-diamine (NPD)
as a hole transporting (HTL) materials in OLEDs was placed on PEDOT-PSS, a hole injection layer (HIL). PEDOT-PSS was spin-coated on to the ITO glass. C60-doped NPD-C60(10 wt%) film was formed via co-evaporation process and the morphology of NPD-C60 films was investigated using XRD and AFM. The J-V, L-V and current efficiency of multi-layered devices were characterized. According to XRD results, the deposited C60 thin film was partially crystalline, but NPD-C60 film was observed not to be crystalline, which indicates that C60 molecules are uniformly dispersed in the NPD film. By using C60-doped NPD-C60 film as a HTL, the current density and luminance of multi-layered ITO/PEDOT-PSS/NPD-C60/Alq3/LiF/Al device were significantly increased by about 80% and its efficiency was improved by about 25% in this study.
- Tang CW, VanSlyke SA, Appl. Phys. Lett., 51, 913 (1987)
- Baldo MA, O'Brien DF, You Y, Shoustikov A, Sibley S, Thompson ME, Forrest SR, Nature, 395(6698), 151 (1998)
- Rand BP, Xue J, Uchida S, Forrest SR, Appl. Phys. Lett., 98, 124902 (2005)
- Shaheen SE, Brabec CJ, Sariciftci NS, Appl. Phys. Lett., 78, 841 (2001)
- Schultes SM, Sullivan P, Heutz S, Sanderson BM, Jones TS, Mater. Sci. Eng. C, 25, 858 (2005)
- Drechsel J, Mannig B, Kozlowski F, Gebeyehu D, Werner A, Koch M, Leo K, Pfeiffer M, Thin Solid Films, 451, 515 (2004)
- Gebeyehu D, Maennig B, Drechsel J, Leo K, Pfeiffer M, Sol. Energy Mater. Sol. Cells, 79, 81 (2003)
- Tripathi V, Datta D, Samal GS, Awasthi A, Kumar S, J. Non-Cryst. Sol., 354, 2901 (2008)
- Xue J, Rand BP, Uchida S, Forrest SR, Appl. Phys. Lett., 98, 124903 (2005)
- Hadziioannou G, van Hutten PF, Editors, Semiconducting Polymers: Chemistry, Physics and Engineering, Wiley-VCH, Verlag GmbH, Weinheim(Federal Republic of Germany) (2000)
- Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ, Science, 270(5243), 1789 (1995)
- Peumans P, Bulovic V, Forrest SR, Appl. Phys. Lett., 76, 2650 (2000)
- Burn PL, Bradley DDC, Friend RH, Halliday DA, Holmes AB, Jackson RW, Kraft A, J. Chem. Soc., 1, 3225 (1992)
- Askari SH, Rughooputh SD, Wudl F, Synth. Met., 29, 129 (1989)
- Brandon KL, Bently PG, Bradley DDC, Dunmur DA, Synth. Met., 91, 305 (1997)
- Jung ES, Cho EH, Chung PJ, J. Korean Ind. Eng. Chem., 9(4), 548 (1998)
- El-Nahass MM, El-Gohary Z, Soliman HS, Opt. Laser Tech., 35, 523 (2003)
- Yuan Y, Grozea D, Lua ZH, J. Appl. Phys., 86, 143509 (2005)
- Khrishnakumar KP, Menon CS, Mater. Lett., 48, 64 (2001)
- Yanagiya S, Nishikata S, Sazaki G, Hoshino A, Nakajima K, Inoue T, J. Cryst. Growth, 254(1-2), 244 (2003)
- Padinger F, Rittberger RS, Sariciftci NS, Adv. Funct. Mater., 13(1), 85 (2003)
- Dittmer JJ, Lazzaroni R, Leclere P, Moretti P, Granstrom M, Petritsch K, Marseglia EA, Friend RH, Bredas JL, Rost H, Holmes AB, Sol. Energy Mater. Sol. Cells, 61(1), 53 (2000)
- Geens W, Aernouts T, Poortmans J, Hadziioannou G, Thin Solid Films, 438, 403 (2002)
- Geens W, Shaheen SE, Wessling B, Brabec CJ, Poortmans J, Sariciftci NS, Org. Electron., 3, 105 (2002)
- Martens T, D’Haen J, Munters T, Beelen Z, Goris L, Manca J, D’Olieslaeger M, Vanderzande D, De Schepper L, Andriessen R, Synth. Met., 138, 243 (2003)
- Drees M, Premaratne K, Graupner W, Heflin JR, Davis RM, Marciu D, Miller M, Appl. Phys. Lett., 81, 4607 (2002)
- Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ, Science, 270(5243), 1789 (1995)
- Xue JG, Rand BP, Uchida S, Forrest SR, Adv. Mater., 17(1), 66 (2005)
- Boamfa MI, Christianen PCM, Maan JC, Engelkamp H, Nolte RJM, Physcia B, 294, 343 (2001)
- Ji ZG, Wong KW, Tse PK, Kwok RWM, Lau WM, Thin Solid Films, 402(1-2), 79 (2002)
- Giebeler C, Antoniadis H, Bradley DDC, Shirota Y, J. Appl. Phys., 85, 1608 (1999)
- Chen BJ, Sun XW, Wong TKS, Hu X, Uddin A, Appl. Phys. Lett., 84, 063505 (2005)
- Lee JY, Jang HK, J. Appl. Phys., 88, 183502 (2006)
- Yuan Y, Han S, Grozea D, Lu ZH, Appl. Phys. Lett., 88, 093603 (2006)
- Grill A, Cold Plasma in Materials Fabrication . From Fundamentals to Applications, John Wiley & Sons, New York (1994)
- Burroughes JH, Bradley DDC, Brown AR, Marks RN, MacKay K, Freind RH, Burn PL, Holmes AB, Nature, 347, 539 (1990)
- Kang DS, Choe Y, J. Korean Ind. Eng. Chem., 18(5), 506 (2007)
- Oh S, Kang DS, Park DW, Choe YS, Sol. State Phen., 124, 427 (2007)
- Oh S, Cho YS, Park DW, Choe YS, Macromol. Sym., 249, 8 (2007)
- Choe YS, Park SY, Park DW, Kim WH, Macromol. Res., 140, 38 (2006)