Journal of the Korean Industrial and Engineering Chemistry, Vol.20, No.4, 449-452, August, 2009
Enterobacter aerogenes에 의한 수소 생산 초기 단계인 포메이트 탈카복시 반응 연구
Formate Decarboxylation: Initial Step for Hydrogen Production by Enterobacter aerogenes
E-mail:
초록
철,셀레늄,그리고 몰리브데늄이 결여되어 있는 최소배지는 Escherichia coli MC4100의 혐기성 배양에서의 수소생산을 억제하였다. 철, 셀레늄, 그리고 몰리브데늄은 대장균과 Enterobacter 모두의 formate dehydrogenase (FDHII ) 효소의 보조인자로 알려져 있다.그러므로 이러한 미량성분들이 최소배지에 결여되어 있을 때는FDHII를 통한 수소생산이 대장균 뿐만 아니라 E. aerogenes에서도 저해될 것이다. 이러한 성분들이 부족할 때 E. aerogenes 413에 의한 수소 생산은 지연되었다.그러므로,E. aerogenes에 의한 수소 생산은 NADH의 재산화가 아닌 포메이트 탈카복시 반응에 의해서 시작된다고 사료된다.
The absence of Fe, Se, and Mo in a minimal medium prevented the production of hydrogen from the anaerobic culture of Escherichia coli MC4100. Fe, Se, and Mo are known to be cofactors of formate dehydrogenase (FDHII) of both E. coli and Enterobacter aerogenes. Hence when these trace elements are absent in the minimal medium, hydrogen production through formate dehydrogenation would be inhibited not only in E. coli but also in E. aerogenes. Hydrogen production by E. aerogenes 413 was delayed when lacking these trace elements. Therefore, it is believed that hydrogen production of E. aerogenes is initiated not by the reoxidation of nicotinamide adenine dinucleotide (NADH) but by formate decarboxylation.
- Hallenbeck PC, Benemann JR, Int. J. Hydrogen Energy, 27, 1185 (2002)
- Nandi R, Sengupta S, Crit. Rev. Microbiol., 24, 61 (1998)
- Suzuki Y, Int. J. Hydrogen Energy, 7, 227 (1982)
- O’M Bockris J, Int. J. Hydrogen Energy, 6, 223 (1981)
- Das D, Veziroglu TN, Int. J. Hydrog. Energy, 26(1), 13 (2001)
- Oh YK, Park MS, Seol EH, Lee SJ, Park SH, Biotechnol. Bioprocess Eng., 8, 54 (2003)
- Oh YK, Kim YJ, Park JY, Lee TH, Kim MS, Park SH, Biotechnol. Bioprocess Eng., 10, 270 (2005)
- Hassmann K, Kuhne HM, Int. J. Hydrogen Energy, 18, 635 (1993)
- Rachman MA, Furutani Y, Nakashimada Y, Kakizono T, Nishio N, J. Ferment. Bioeng., 83(4), 358 (1997)
- Neidhardt FC, Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed., 262, ASM Press, Washington DC (1996)
- Gottschalk G, Bacterial metabolism, 2nd ed., 152, Springer-Verlag, New York (1986)
- Tanisho S, Ishiwata Y, Int. J. Hydrogen Energy, 20, 541 (1995)
- Sawers G, Antonie van Leeuwenhoek, 66, 57 (1994)
- Clark DP, Fems Microbiol. Rev., 63, 223 (1989)
- Pinsent J, Biochem. J., 57, 10 (1954)
- Gest H, Peck Jr. HD, J. Bacteriol., 70, 326 (1955)
- Tanisho S, Kamiya N, Wakao N, Biochim. Biophys. Acta., 973, 1 (1989)
- Tanisho S, Ishiwata Y, Int. J. Hydrogen Energy, 19, 807 (1994)
- Sambrook J, Fritsch EF, Maniatis T, Molecular cloning: a laboratory manual. 2nd ed., 1, Cold Spring Harbor laboratory press, New York (1989)
- Mat-Jan F, Kiswar YA, Clark DP, J. Bacteriol., 171, 342 (1989)
- Penfold DW, Forster CF, Macaskie LE, Enzyme Microb. Technol., 33(2-3), 185 (2003)
- Klibanov AM, Alberti BN, Zale SE, Biotechnol. Bioeng., 24, 25 (1982)
- Kurokawa T, Tanisho S, Mar. Biotechnol., 7, 112 (2005)