화학공학소재연구정보센터
Polymer(Korea), Vol.33, No.4, 353-357, July, 2009
단백질 캡슐화를 위한 동축 이중 노즐을 사용한 전기분무건조법
Electrohydrodynamic Spray Drying Using Co-axial Nozzles for Protein Encapsulation
E-mail:
초록
분무건조는 약물의 입자 제조에 널리 사용되고 있는 효과적이고 안정적인 공정 중 하나이다. 과거 분무건조의 방법에서는 입자의 응집을 조절하기 쉽지 않았으며, 크기 조절에도 많은 어려움을 겪어 왔다. 특히 고분자 입자의 제조는 저분자 유기물질인 식품, 의약원료 등과 비교하여 상대적으로 제조하기 어려운 면이 있었다. 본 연구에서는 기존의 분무건조기를 개조하여 노즐에 전기장을 외부에서 가해 줌과 동시에 동축 이중 노즐을 사용하여 고분자 입자의 제조를 시도하였다. 내부 고분자 물질로는 폴리에틸렌글리콜과 폴리락타이드코글리코라이드를, 외부 물질로는 락토오스를 사용하였다. 그 결과 전기장을 사용하지 않는 분무건조에 비해 비교적 일정한 크기와 모양을 제조할 수 있었으며, 입자 간의 응집을 줄일 수 있음을 확인하였다. 전기분무건조된 PLGA 분말은 주로 2∼5 μm 크기인 둥근 모양의 입자로 구성 되었다.
Spray drying is an effective and stable process, which has been widely used to produce pharmaceutical powders. In the traditional spray drying process, it was not quite easy to control the aggregation and the size of particles. Particularly, the preparation of polymeric particles was relatively hard compared to the preparation of food and pharmaceutical ingredients, typically organic materials of small molecular weights. In this study, modification of a conventional spray dryer was tried to use electrical charge and co-axial nozzles to prepare polymeric particles. Poly(ethylene glycol) and poly(D,L-lactideco-glycolide) were used as the inner polymeric materials, and lactose as the outer shell materials. The results showed that electrohydrodynamic spray-dried particles had a relatively uniform size and particle morphology, and the aggregation of particles could be suppressed compared to the conventional spraydried particles. The electrohydrodynamic spray-dried powders consisted of spherical particles of 2∼5 μm diameters.
  1. Lastow O, Andresson J, Nilsson A, Balachandran W, Pharmaceutical Development and Thechnology, 12, 175 (2007)
  2. XIe J, Marijinissen JCM, Wang CH, Biomaterials, 27, 3321 (2006)
  3. Xie J, Ng WJ, Lee LY, Wamg CH, J. Colloid Interf. Sci., 317, 469 (2008)
  4. Asada M, Akahashi H, Okamoto H, Tanino H, Danjo K, Int. J. Pharm., 270, 167 (2004)
  5. Lopez-Herrera JM, Barrero A, Lopez A, Loscertales IG, Marquez M, J. Aerosol Sci., 34, 535 (2003)
  6. Lacasse FX, Hildgen P, McMullen JN, Int. J. Pharm., 174, 101 (1998)
  7. Leach G, Oliveira G, Morais R, J. Ind. Microbiol. Biotech., 20, 82 (1999)
  8. Jimenez M, Garcia HS, Beristain CI, Eur. Food Res. Technol., 219, 588 (2004)
  9. Rodriguez-Huezo ME, Pedroza-Islas R, Prado-Barragan LA, Beristain CI, Vernon-Carter EJ, J. Food Sci., 69, E351 (2004)
  10. Hinds WC, Aerosol Technology, Properties, Behavior and Measurement of Airborne Particle, John Wiley & Sons, New York (1982)
  11. Loscertales IG, Barrero A, Guerrero I, Cortijo R, Marquez M, Ganan-Calvo AM, Science, 295, 1695 (2002)
  12. Sakai T, Sadakata M, Sato M, Kimura K, Atomization Sprays, 1, 171 (1991)
  13. Ganan-Calvo AM, J. Aerosol Sci., 30(7), 863 (1999)
  14. Marin AG, Loscertales IG, Marquez M, Barrero A, Phys. Rev. Lett., 98, 014502 (2007)
  15. Mei F, Chen DR, Phys. Fluids, 19, 103303 (2007)
  16. Jayasinghe SN, Townsend-Nicholson A, Lab Chip, 6, 1086 (2006)
  17. Su YL, Fu ZY, Zhang JY, Wang WM, Wang H, Wang YC, Zhang QJ, Powder Technology, 184, 114 (2008)