화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.26, No.4, 1058-1064, July, 2009
Removal of iron from drinking water by electrocoagulation: Adsorption and kinetics studies
E-mail:
The present study provides an electrocoagulation process for the removal of iron from drinking water with aluminum alloy as the anode and stainless steel as the cathode. The studies were carried out as a function of pH, temperature and current density. The adsorption capacity was evaluated with both the Langmuir and the Freundlich isotherm models. The results showed that the maximum removal efficiency of 98.8% was achieved at a current density of 0.06 A dm^(-2), at a pH of 6.5. The adsorption of iron preferably fitting the Langmuir adsorption isotherm suggests monolayer coverage of adsorbed molecules. The adsorption process follows second-order kinetics. Temperature studies showed that adsorption was endothermic and spontaneous in nature.
  1. Das B, Talukdar J, Sarma S, Gohain B, Dutta RK, Das AC, Curr. Sci., 85, 657 (2003)
  2. Mahanta DB, Das NN, Dutta RK, Indian J. Environ. Prot., 24, 654 (2004)
  3. Sharma R, Shah S, Mahanta C, Asain J. Water Environ. Pollut., 2, 47 (2005)
  4. Subba Rao N, Environ. Monit. Assess., 136, 437 (2007)
  5. WHO Guidelines for Drinking Water Quality, Health criteria and other supporting information, 2nd edition (2), WHO, Geneva (1996)
  6. Council directive 98/83/EC on the quality of water intended for human consumption, L330/32-L330/50, Official Journal of the European Communities (1998)
  7. Central pollution control board, Ministry of Environment and Forests, http://www.cpcb.nic.in Government of India, Delhi.
  8. Vaaramaa K, Lehto J, Desalination, 155(2), 157 (2003)
  9. Munter R, Ojaste H, Sutt J, J. Environ. Eng., 131, 1014 (2005)
  10. Andersen WC, Bruno TJ, Anal. Chim. Acta, 485, 1 (2003)
  11. Berbenni P, Pollice A, Canziani R, Stabile L, Nobili F, Bioresour. Technol., 74(2), 109 (2000)
  12. Aziz HA, Yusoff MS, Adlan MN, Adnan NH, Alias S, Water Manage., 24, 353 (2004)
  13. Ellis D, Bouchard C, Lantagne G, Desalination, 130(3), 255 (2000)
  14. Das B, Hazarika P, Saikia G, Kalita H, Goswami DC, Das HB, Dube SN, Dutta RK, J. Hazard. Mater., 141(3), 834 (2007)
  15. Cho BY, Process Biochem., 40, 3314 (2005)
  16. Miwa DW, Malpass GRP, Machado SAS, Motheo AJ, Water Res., 40, 3281 (2006)
  17. Onder E, Koparal AS, Ogutveren UB, Sep. Purif. Technol., 52(3), 527 (2007)
  18. Ikematsu M, Kaneda K, Iseki M, Yasuda M, Sci. Total Environ., 382, 159 (2007)
  19. Jara CC, Fino D, Specchia V, Saracco G, Spinelli R, Appl. Catal. B: Environ., 70(1-4), 479 (2007)
  20. Christensen PA, Egerton TA, Lin WF, Meynet P, Shaoa ZG, Wright NG, Chem. Commun., 38, 4022 (2006)
  21. Carlos A, Huitle M, Ferro S, Chem. Soc. Rev., 35, 1324 (2006)
  22. Gabrielli C, Maurin G, Francy-Chausson H, Thery P, Tran TTM, Tlili M, Desalination, 201(1-3), 150 (2006)
  23. Chen XM, Chen GH, Yue PL, Chem. Eng. Sci., 57(13), 2449 (2002)
  24. Chen GH, Sep. Purif. Technol., 38(1), 11 (2004)
  25. Adhoum N, Monser L, Chem. Eng. Process., 43(10), 1281 (2004)
  26. Kobya M, Can OT, Bayramoglu M, J. Hazard. Mater., B100, 163 (2003)
  27. Namasivayam C, Prathap K, J. Hazard. Mater., 123B, 127 (2005)
  28. Mckay G, Ho YS, Water Res., 33, 578 (1999)
  29. Namasivayam C, Senthil Kumar S, Ind. Eng. Chem. Res., 37, 4813 (1998)
  30. Uber FH, Z. Phys. Chem., 57, 387 (1985)
  31. Langmuir I, J. Am. Chem. Soc., 40, 1361 (1918)
  32. Michelson LD, Gideon PG, Pace EG, Kutal LH, US Department Industry, Office of Water Research and Technology Bulletin (1975)
  33. Nigussie W, Zewge F, Chandravanshi BS, J. Hazard. Mater., 147(3), 954 (2007)
  34. Nayak Preeti S, Singh BK, Res. J. Chem. Environ., 11, 23 (2007)
  35. Yang XY, Al-Duri B, Chem. Eng. J., 83(1), 15 (2001)
  36. Golder AK, Samanta AN, Ray S, Sep. Purif. Technol., 52(1), 102 (2006)