화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.47, No.3, 337-343, June, 2009
선택적 고체순환을 위한 2탑 유동층 시스템 연구
A Study on Two-interconnected Fluidized Beds System for Selective Solid Circulation
E-mail:
초록
선택적 고체순환을 위한 신개념 2탑 유동층 공정에 적용하기 위해 고체분리기와 고체순환시스템을 개발하였다. 고체분리기에 의한 고체분리속도는 고체분사노즐의 유속, 고체층 높이, 고체분사노즐의 직경이 증가함에 따라 증가하였으며 유동화 속도의 영향은 크지 않았다. 본 연구에서 개발한 고체분리기를 이용하여 굵은입자(212~300 μm)와 고운입자(63~106 μm)의 분리가 가능하였으며 고체분리속도는 66~453 g/min의 범위를 나타내었다. 고체순환시스템의 고체순환속도는 고체분사노즐의 유속, 고체층 높이, 고체유입구멍의 개수가 증가함에 따라 증가하였으며 유동화 속도의 영향은 크지 않았다. 본 연구에서 개발한 고체순환시스템을 이용하여 고운입자의 순환이 가능하였으며 고체순환속도는 65~390 g/min의 범위를 나타내었다. 본 연구에서 개발된 고체분리기와 고체순환시스템을 적용하여 선택적 고체순환이 가능한 2탑 유동층 공정을 구성하였으며 장기연속운전 가능성을 확인하기 위해 약 20시간까지 고체분리-순환 장기연속운전을 실증하였다. 두 유동층의 압력강하 값과 고체분리속도가 안정적으로 유지되어 고체순환이 원활하게 유지되는 것을 확인하였다.
To apply to novel two-interconnected fluidized beds system for selective solid circulation, a solid separator and a solid circulation system were developed. The solid separation rate increased as the gas velocity through the solid injection nozzle, solid height, and diameter of solid injection nozzle increased. However, the effect of the fluidization velocity was negligible. Coarse(212~300 μm) and fine(63~106 μm) particles were separated using the solid separator and the solid separation rate was ranged from 66 to 453 g/min. The solid circulation rate increased as the gas velocity through the solid injection nozzle, solid height, and the number of solid intake holes increased. However, the effect of the fluidization velocity was negligible. Fine particle was circulated using the solid circulation system and the solid circulation rate was ranged from 65 to 390 g/min. We also proposed two interconnenced fluidized beds system for selective solid circulation equipped with the developed solid separator and the solid circulation system. Long-term operation of continuous solid circulation up to 20 hours has been performed to check feasibility of stable operation. The pressure drop profiles in two beds and the solid separation rate were maintained steadily, and therefore, we could conclude that solid circulation was smooth and stable.
  1. Kunii D, Levenspiel O, Fluidization engineering, 1st Ed., John Wiley & Sons, Inc., New York (1969)
  2. Yi CK, Luyben WL, Ind. Eng. Chem. Res., 38(11), 4290 (1999)
  3. Yi CK, Jo SH, Seo Y, Lee JB, Ryu CK, Int. J. of Greenhouse Gas Control, 1, 31 (2007)
  4. Ryu HJ, Jin GT, Energy Engg. J., 14, 289 (2003)
  5. Ryu HJ, Jin GT, Korean J. Chem. Eng., 24(3), 527 (2007)
  6. Ryu HJ, Trans. of the Korean Hydrogen and New Energy Society, 18, 382 (2007)
  7. Ryu HJ, Yi CK, Shun D, Jin GT, Theories and Applications of Chem. Eng., KIChE, 14, 294 (2008)
  8. Ryu HJ, Park YC, Lee SY, Kim HK, Korean Chem. Eng. Res., 47(2), 195 (2009)
  9. Ryu HJ, Park YC, Jo SH, Park MH, Korean J. Chem. Eng., 25(5), 1178 (2008)
  10. Ryu HJ, Park JH, Kim HK, Park MH, Korean Chem. Eng. Res., 46(6), 1057 (2008)