화학공학소재연구정보센터
Clean Technology, Vol.15, No.1, 47-53, March, 2009
계면활성제를 이용하여 제조된 중형기공성 알루미나 담체에 담지된 니켈촉매 상에서 액화천연가스(LNG)의 수증기개질반응에 의한 수소 제조
Hydrogen Production by Steam Reforming of Liquefied Natural Gas (LNG) over Nickel Catalyst Supported on Surfactant-templated Mesoporous Alumina
E-mail:
초록
양이온성(C), 음이온성(A) 및 비이온성(N) 계면활성제 각각을 주형물질로 사용하여 중형기공성 알루미나 (A-C, A-A 및 A-N)를 제조한 후, 이를 담체로 활용하여 일반적인 함침법으로 담지 니켈촉매(Ni/A-C, Ni/A-A 및 Ni/A-N)를 제조하였으며, 이를 액화천연가스의 수증기 개질반응에 의한 수소 제조에 적용하였다. 소성된 촉매에서 니켈종은 계면활성제의 종류에 상관없이 중형기공성 알루미나 담체의 표면에 균일하게 분산되었다. 하지만 환원된 촉매에서 니켈과 알루미나 담체 간의 상호작용 세기는 계면활성제의 종류에 밀접하게 의존하였다. 액화천연가스 전환율 및 건가스 중 수소가스 조성은 Ni/A-C < Ni/A-A < Ni/A-N의 순으로 증가하였다. 환원된 촉매 상의 니켈 비표면적이 증가할수록 반응활성 역시 증가하는 것으로 나타났으며, 제조된 촉매중에서 니켈 비표면적이 가장 높은 Ni/A-N 촉매가 가장 높은 반응환성을 나타내었다.
Mesoporous aluminas (A-C, A-A, and A-N) were prepared by a templating method using cationic(C), anionic(A), and non-ionic(N) surfactant as a structure-directing agent, respectively. Nickel catalysts supported on mesoporous alumina (Ni/A-C, Ni/A-A, and Ni/A-N) were then prepared by an impregnation method, and were applied to hydrogen production by steam reforming of liquefied natural gas (LNG). Regardless of surfactant type, nickel species were finely dispersed on the surface of mesoporous alumina in the calcined catalysts. It was revealed that interaction between nickel species and support in the reduced catalysts was strongly dependent on the identity of surfactant. LNG conversion and H2 composition in dry gas increased in the order of Ni/A-C < Ni/A-A < Ni/A-N. It was found that catalytic performance increased with increasing nickel surface area in the reduced catalyst. Among the catalyst tested, Ni/A-N catalyst with the highest nickel surface area showed the best catalytic performance.
  1. Schrope M, Nature, 414, 682 (2001)
  2. Ko KD, Lee JK, Park D, Shin SH, Korean J. Chem. Eng., 12(4), 478 (1995)
  3. Seo JG, Youn MH, Park S, Lee J, Lee SH, Lee H, Song IK, Korean J. Chem. Eng., 25(1), 95 (2008)
  4. Rostrup-Nielsen JR, Catal. Today, 63(2-4), 159 (2000)
  5. Rostrup-Nielsen JR, Sehested J, Norskov JK, Adv. Catal., 47, 65 (2002)
  6. Sehested J, Gelten JAP, Remediakis IN, Bengaard H, Norskov JK, J. Catal., 223(2), 432 (2004)
  7. Lisboa JD, Santos DCRM, Passos FB, Noronha FB, Catal. Today, 101(1), 15 (2005)
  8. Chen I, Chen F, Ind. Eng. Chem. Res., 29, 534 (1990)
  9. Suh DJ, Park TJ, Kim JH, Kim KL, Chem. Mater, 9, 1903 (1997)
  10. Seo JG, Youn MH, Cho KM, Park S, Song IK, J. Power Sources, 173(2), 943 (2007)
  11. Kim JH, Suh DJ, Park TJ, Kim KL, Appl. Catal. A: Gen., 197(2), 191 (2000)
  12. Ray JC, You KS, Ahn JW, Ahn WS, Micropor. Mesopor. Mater., 100, 183 (2007)
  13. Valange S, Guth JL, Kolenda F, Lacombe S, Gabelica Z, Micropor. Mesopor. Mater., 35, 591 (2000)
  14. Yada M, Hiyoshi H, Ohe K, Machida M, Kijima T, Inorg. Chem., 36(24), 5565 (1997)
  15. Vaurdy F, Khodabandeh S, Davis ME, Chem. Mater., 8, 1451 (1996)
  16. Bagshaw SA, Pinnavaia TJ, Angew. Chem. Znt. Ed., 35, 1102 (1996)
  17. Yang PD, Zhao DY, Margolese DI, Chmelka BF, Stucky GD, Nature, 396(6707), 152 (1998)
  18. Seo JG, Youn MH, Park S, Jung JC, Kim P, Chung JS, Song IK, J. Power Sources, 186, 178 (2009)
  19. Seo JG, Youn MH, Park S, Park DR, Jung JC, Chung JS, Song IK, "Hydrogen Production by Steam Reforming of Liquefied Natural Gas (LNG) over Mesoporous Nickel-alumina Composite Catalyst Prepared by an Anionic Surfactant-templating Method," Catal. Today, 10.1016/j.cattod. 2008.12.008
  20. Seo IG, Youn MH, Song IK, Int. J. Hydrogen Energ., 34, 1809 (2009)
  21. Pelletier L, Liu DDS, Appl. Catal. A: Gen., 317(2), 293 (2007)
  22. Kim P, Kim Y, Kim H, Song IK, Yi J, J. Mol. Catal. A-Chem., 231(1-2), 247 (2005)
  23. Seo JG, Youn MH, Cho KM, Park S, Lee SH, Lee J, Song IK, Korean J. Chem. Eng., 25(1), 41 (2008)
  24. Bengaard HS, Norskov JK, Sehested J, Clausen BS, Nielsen LP, Molenbroek AM, Rostrup-Nielsen JR, J. Catal., 209(2), 365 (2002)
  25. Matsumura Y, Nakamori T, Appl. Catal. A: Gen., 258(1), 107 (2004)
  26. Trimm DL, Stud. Surf. Sci Catal., 36, 39 (1987)