화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.20, No.3, 273-278, June, 2009
2-pyran-4-ylidene-malononitrile을 기본으로 하는 작은 Band Gap을 가지는 공중합체의 합성 및 광전변환 특성
Synthesis and Photovoltaic Properties of Low Band Gap π-conjugated Polymers Based on 2-pyran-4-ylidene-malononitrile Derivatives
E-mail:
초록
Heck coupling reaction을 이용해서 poly[2-(2,6-dimethylpyran-4-ylidene)malononitrile-alt-1,4-bis(dodecyloxy)-2,5-divinylbenzene] (PM-PPV), poly[2-{2,6-Bis-[2-(5-bromothiophen-2-yl)-vinyl]-pyran-4-ylidene}-malononitrile-alt-1,4-bis(dodecyloxy)-2,5-divinylbenzene] (PMT-PPV), poly[2-[2,6-Bis-(2-{4-[(4-bromophenyl)-phenylamino]-phenyl}-vinyl)-pyran-4-ylidene]-malononitrile-alt-1,4-bis(dodecyloxy)-2,5-divinylbenzene] (PMTPA-PPV)를 합성하였다. PM-PPV, PMT-PPV, PMTPA-PPV의 band gap은 각각 2.18 eV, 1.90 eV, 2.07 eV로 나타났다. LUMO 에너지 준위는 각각 3.65 eV, 3.54 eV, 3.62 eV로 나타났고 HOMO 에너지 준위는 각각 5.83 eV, 5.61 eV, 5.52 eV이고 소자를 제작하여 측정한 결과는 AM 1.5 G [1 sun condition (100 mA/cm2)]에서의 효율은 0.028%, 0.031%, 0.11%이고 open-circuit voltage (Voc)는 0.59 V∼0.69 V로 나타났다.
A series of poly[2-(2,6-dimethylpyran-4-ylidene)malononitrile-alt-1,4-bis(dodecyloxy)-2,5-divinylbenzene] (PM-PPV), poly[2-{2,6-Bis-[2-(5-bromothiophen-2-yl)-vinyl]-pyran-4-ylidene}-malononitrile-alt-1,4-bis(dodecyloxy)-2,5-divinylbenzene] (PMT-PPV) and poly[2-[2,6-Bis-(2-{4-[(4-bromophenyl)-phenylamino]-phenyl}-vinyl)-pyran-4-ylidene]-malononitrile-alt-1,4-bis(dodecyloxy)-2,5-divinylbenzene] (PMTPA-PPV) were synthesized by the Heck coupling reaction. The band gap of PM-PPV, PMT-PPV and PMTPA-PPV were 2.18 eV, 1.90 eV and 2.07 eV, respectively. The LUMO energy levels of PM-PPV, PMT-PPV and PMTPA-PPV were 3.65 eV, 3.54 eV and 3.62 eV, respectively and the HOMO energy levels of those were 5.83 eV, 5.61 eV and 5.52 eV, respectively. The photovoltaic devices based on the polymers was fabricated. The efficiency of the solar cells based on PM-PPV, PMT-PPV and PMTPA-PPV were 0.028%, 0.031% and 0.11%, respectively and the open circuit voltage (Voc) was 0.59 V∼0.69 V under AM 1.5 G and 1 sun condition (100 mA/cm2).
  1. Tang CW, Appl. Phys. Lett., 48, 183 (1986)
  2. Xue J, Uchida S, BPR, Forrest SR, Appl. Phys. Lett., 84, 3013 (2004)
  3. Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ, Science, 270(5243), 1789 (1995)
  4. Brabec CJ, Shaheen SE, Winder C, Sariciftci NS, Appl. Phys. Lett., 80, 1288 (2002)
  5. Peet N, Kim JY, Coates NE, Ma WL, Moses D, Heeger AJ, Bazan CG, Nature Mater., 6, 497 (2007)
  6. Muhlbacher D, Scharber M, Morana M, Zhu ZG, Waller D, Gaudiana R, Brabec C, Adv. Mater., 18(21), 2884 (2006)
  7. Zhu Z, Waller D, Gaudiana R, Morana M, Muhlbacher D, Scharber M, Brabec C, Macromolecules, 40(6), 1981 (2007)
  8. Kim JH, You NH, Lee H, J. Polym. Sci. A: Polym. Chem., 44(12), 3729 (2006)
  9. Kim JH, Lee H, Chem. Mater., 14, 2270 (2002)
  10. Sun XB, Liu YQ, Xu XJ, Yang CH, Yu G, Chen SY, Zhao ZH, Qiu WF, Li YF, Zhu DB, J. Phys. Chem. B, 109(21), 10786 (2005)
  11. Wu C, Strum JC, Register RA, Tian J, Dana EP, Thompson ME, IEEE Trans. Electron Devices, 44, 1269 (1997)