화학공학소재연구정보센터
Polymer(Korea), Vol.33, No.3, 191-197, May, 2009
CuPc: F4-TCNQ 정공 수송층이 도입된 p-i-n형 유기 박막 태양전지의 성능 특성 연구
Performance Characteristics of p-i-n Type Organic Thin-film Photovoltaic Cell with CuPc: F4-TCNQ Hole Transport Layer
E-mail:
초록
박막형 유기 태양전지의 성능 향상을 위하여 정공 수송층인 CuPc 층에 강한 p형 유기 반도체인 F4-TCNQ을 도핑하여 ITO/ PEDOT:PSS/CuPc: F4-TCNQ(5wt%)/CuPc:C60(blending ratio 1:1)/C60/BCP/LiF/Al의 이종 접합 구조를 가지는 p-i-n형 유기 박막형 태양전지 소자를 진공증착 장비를 이용하여 제조한 후, 유기 태양전지의 전류 밀도-전압(J-V) 특성, 단락 전류(Jsc), 개방 전압(Voc), 충진 인자(fill factor: FF), 에너지 전환 효율(ηe) 등을 측정하고 계산하여 성능 평가를 수행하였다. CuPc 층에 F4-TCNQ을 도핑함으로써 에너지 흡수 스펙트럼에서 흡수강도가 증가하였으며, F4-TCNQ가 도핑된 CuPc박막에서 F4-TCNQ 유기 분자의 분산성 향상, 박막의 표면 균일성, 주입 전류(injection currents) 향상 효과 등에 의해서 제조된 p-i-n형 유기 박막 태양전지의 성능이 향상되는것으로 확인되었다. 제조된 유기 태양전지의 에너지 전환 효율(ηe)은 0.16%로 실리콘 태양전지와 비교해서 아직도 성능 향상을 위한 많은 노력이 필요함을 보여 준다.
We have investigated the effect of strong p-type organic semiconductor F4-TCNQ-doped CuPc hole transport layer on the performance of p-i-n type bulk heterojunction photovoltaic device with ITO/PEDOT:PSS/CuPc: F4-TCNQ(5 wt%)/CuPc:C60(blending ratio 1:1)/C60/BCP/LiF/Al, architecture fabricated via vacuum deposition process, and have evaluated the J-V characteristics, shortcircuit current(Jsc), open-circuit voltage(Voc), fill factor(FF), and power conversion efficiency(ηe) of the device. By doping F4-TCNQ into CuPc hole transport layer, increased absorption intensity in absorption spectra, uniform dispersion of organic molecules in the layer, surface uniformity of the layer, and enhanced injection currents improved the current photovoltaic device with power conversion efficiency(ηe) of 0.16%, which is still low value compared to silicone solar cell indicating that many efforts should be made to improve organic photovoltaic devices.
  1. Tang CW, VanSlyke SA, Appl. Phys. Lett., 51, 913 (1987)
  2. Baldo MA, O'Brien DF, You Y, Shoustikov A, Sibley S, Thompson ME, Forrest SR, Nature, 395(6698), 151 (1998)
  3. Rand BP, Xue J, Uchida S, Forrest SR, Appl. Phys. Lett., 98, 124902 (2005)
  4. Shaheen SE, Brabec CJ, Sariciftci NS, Appl. Phys. Lett., 78, 841 (2001)
  5. Schultes SM, Sullivan P, Heutz S, Sanderson BM, Jones TS, Mater. Sci. Eng. C, 25, 858 (2005)
  6. Drechsel J, Mannig B, Kozlowski F, Gebeyehu D, Werner A, Koch M, Leo K, Pfeiffer M, Thin Solid Films, 451, 515 (2004)
  7. Gebeyehu D, Maennig B, Drechsel J, Leo K, Pfeiffer M, Sol. Energy Mater. Sol. Cells, 79, 81 (2003)
  8. Tripathi V, Datta D, Samal GS, Awasthi A, Kumar S, J. Non-Crystalline Solids, 354, 2901 (2008)
  9. Xue J, Rand BP, Uchida S, Forrest SR, Appl. Phys. Lett., 98, 124903 (2005)
  10. Hadziioannou G, van Hutten PF, Editors., Semiconducting Polymers: Chemistry, Physics and Engineering, WILEYVCHVerlag GmbH, Weinheim, Federal Republic of Germany (2000)
  11. Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ, Science, 270(5243), 1789 (1995)
  12. Peumans P, Bulovic V, Forrest SR, Appl. Phys. Lett., 76, 2650 (2000)
  13. Park C, Seol J, Korean Chem. Eng. Res., 42(3), 269 (2004)
  14. Brabec CJ, Hauch JA, Schilinsky P, Waldauf C, MRS Bullletin, 30, 50 (2005)
  15. Green MA, Silicon Solar Cells: Advanced Principles and Practice, Bridge Printery, Sidney (1995)
  16. Hoffert MI et al., Science, 298, 981 (2002)
  17. Goetzberger A, Hebling C, Schock HW, Mater. Sci. Eng. R, 40, 1 (2003)
  18. Fromherz T, Padinger F, Gebeyehu D, Brabec C, Hummelen JC, Sariciftci NS, Sol. Energy Mater. Sol. Cells, 63(1), 61 (2000)
  19. Kim JY, Lee K, Coates NE, Moses D, Nguyen TQ, Dante M, Heeger AJ, Science, 317, 222 (2007)
  20. Brabec CJ, Sariciftci NS, Hummelen JC, Adv. Funct. Mater., 11(1), 15 (2001)
  21. Peumans P, Yakimov A, Forrest SR, J. Appl. Phys., 93, 3693 (2003)
  22. Gregg BA, J. Phys. Chem. B, 107(20), 4688 (2003)
  23. Xue J, Uchida S, Rand BP, Forrest SR, Appl. Phys. Lett., 85, 5757 (2004)
  24. Xue JG, Rand BP, Uchida S, Forrest SR, Adv. Mater., 17(1), 66 (2005)
  25. Padinger F, Rittberger RS, Sariciftci NS, Adv. Funct. Mater., 13(1), 85 (2003)
  26. Dittmer JJ, Lazzaroni R, Leclere P, Moretti P, Granstrom M, Petritsch K, Marseglia EA, Friend RH, Bredas JL, Rost H, Holmes AB, Sol. Energy Mater. Sol. Cells, 61(1), 53 (2000)
  27. Geens W, Aernouts T, Poortmans J, Hadziioannou G, Thin Solid Films, 438, 403 (2002)
  28. Geens W, Shaheen SE, Wessling B, Brabec CJ, Poortmans J, Sariciftci NS, Org. Electron., 3, 105 (2002)
  29. Martens T, Haen JD, Munters T, Beelen Z, Goris L, Manca J, D’Olieslaeger M, Vanderzande D, De Schepper L, Andriessen R, Synth. Met., 138, 243 (2003)
  30. Drees M, Premaratne K, Graupner W, Heflin JR, Davis RM, Marciu D, Miller M, Appl. Phys. Lett., 81, 4607 (2002)
  31. Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ, Science, 270(5243), 1789 (1995)
  32. Peumans P, Forrest SR, Appl. Phys. Lett., 29, 126 (2001)
  33. Peumans P, Bulovic V, Forrest SR, Appl. Phys. Lett., 76, 2650 (2000)
  34. Vogel M, Doka S, Breyer C, Lux-Steiner MC, Fostiropoulos K, Appl. Phys. Lett., 89, 163501 (2006)
  35. Schon JH, Kloc C, Bucher E, Batlogg B, Nature(London), 403, 408 (2000)
  36. Lee JY, Jang HK, J. Appl. Phys., 88, 183205 (2006)
  37. Yuan YY, Han S, Grozea D, Lu ZH, Appl. Phys. Lett., 88, 093603 (2006)
  38. Lozzi L, Santucci S, La Rosa S, Appl. Phys. Lett., 88, 133505 (2006)
  39. Noh SG, Kim SH, Yang JJ, Lee CH, Kim JY, J. Korean. Phys. Soc., 53, 1551 (2008)