Korean Chemical Engineering Research, Vol.47, No.2, 190-194, April, 2009
계면활성제를 첨가한 미셀 형성 세라믹 정밀여과에 의한 용존 철 이온 제거
Removal of Aqueous Iron Ion by Micellar Enhanced Ceramic Microfiltration Adding Surfactant
E-mail:
초록
본 연구에서는 공업용수 중에 미량 함유될 수 있는 철 이온을 제거하기 위해 음이온 계면활성제 SDS를 주입하여 미셀을 형성한 후, 미셀과 철 이온이 결합된 응집체를 관형 세라믹 정밀여과막으로 배제하였다. 철 모사용액을 대상으로 SDS 농도가 철과 SDS 제거율에 미치는 영향을 알아본 결과, 철의 제거율은 SDS의 임계미셀농도(CMC)인 8.00mM에서 가장 높은 92.26%를 나타내었고, SDS 제거율은 칼슘 이온 제거 결과보다 다소 높은 61.10%를 보였다. SDS의 농도가 증가함에 따라 최종 막오염에 의한 저항 Rf가 증가하여 4 mM일 때 가장 높은 값을 보이다가 10 mM에서 가장 낮은 값을 나타내었다. SDS 10 mM인 조건에서 최종 투과선속 J180가 가장 큰 값을 나타냈었고, 결국 가장 높은 총여과부피를 얻을 수 있었다. CMC 8 mM의 경우 운전시간 80분까지는 10 mM과 동일하게 낮은 Rf 값을 보이다가, 120분까지 급격하게 증가하다가 다시 180분까지 서서히 증가하는 경향을 보였다.
In this study sodium dodecyl sulfate (SDS), which was anionic surfactant, was added for forming micelles to remove iron ion that could be contained with small amount in industrial water. Then aggregates binding between iron ions and micelles were rejected by a ceramic microfiltration membrane. As result of SDS concentration effect on removal rates of iron and SDS in modified iron solution, the removal rate of iron was the highest value of 92.26% and the removal rate of SDS was 61.10% a little higher than the result of calcium ion at 8 mM which was CMC (Critical micelle concentration) of SDS. As final resistance of membrane fouling Rf increased the more at the higher SDS concentration, it showed the highest value at 4 mM and the lowest at 10 mM of SDS. The final permeate flux J180 had the highest value and the largest total permeate volume could be finally acquired at SDS 10 mM. In case of CMC 8 mM, low Rf was shown as same as that of 10 mM until 80 minutes of operation, and tended to increase dramatically to 120 minutes and increase slowly again until 180 minutes.
- Pak BC, Kim SD, Baek BJ, Lee DH, AAPG Bull., 29, 1229 (2005)
- Baek K, Yang JW, J. Korean Ind. Eng. Chem., 15(2), 153 (2004)
- Fernandez E, Benito JM, Pazos C, Coca J, J. Membr. Sci., 246(1), 1 (2005)
- Park BR, Park JY, Membrane Journal, 18, 7 (2008)
- Rai P, Rai C, Majumdar GC, DasGupta S, De S, J. Membr. Sci., 283(1-2), 116 (2006)
- Nam ST, Han MJ, Membrane Journal, 15, 338 (2005)
- Vyas HK, Mawson AJ, Bennett RJ, Marshall AD, J. Membr. Sci., 176(1), 113 (2000)
- Karode SK, J. Membr. Sci., 188(1), 9 (2001)
- Heran M, Elmaleh S, J. Membr. Sci., 188(2), 181 (2001)
- Cakl J, Bauer I, Dolecek P, Mikulasek P, Desalination, 127(2), 189 (2000)
- Meacle F, Aunins A, Thornton R, Lee A, J. Membr. Sci., 161(1-2), 171 (1999)
- Katsoufidou K, Yiantsios SG, Karabelas AJ, J. Membr. Sci., 266(1-2), 40 (2005)
- Hyun SH, Membrane Journal, 3, 1 (1993)
- Gan Q, Howell JA, Field RW, England R, Bird MR, McKechinie MT, J. Membr. Sci., 155(2), 277 (1999)
- Laitinen N, Michaud D, Piquet C, Teilleria N, Luonsi A, Levanen E, Nystrom M, Sep. Purif. Technol., 24(1-2), 319 (2001)
- Park JY, Choi SJ, Park BR, Desalination, 202(1-3), 207 (2007)
- Li MS, Zhao YJ, Zhou SY, Xing WH, Wong FS, J. Membr. Sci., 299(1-2), 122 (2007)
- Hong JJ, Yang SM, Lee CH, Choi YK, Kajiuchi T, J. Colloid Interface Sci., 202(1), 63 (1998)
- Noh SI, Lee SB, Cho KM, Lee YM, Shim JK, Membrane Journal, 16, 59 (2006)
- Cheryan M, Technomic Pub. Co., Pennsylvania, 89 (1984)
- Yang HS, Han KH, Kang DW, Song MJ, Kim YH, HWAHAK KONGHAK, 34(4), 482 (1996)