화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.15, No.2, 247-252, March, 2009
Fast pyrolysis of chicken litter and turkey litter in a fluidized bed reactor
E-mail:
Disposal of poultry litter such as chicken litter and turkey litter is becoming a major problem in the USA poultry industry because of environmental pressures and health concerns. Poultry litters form wood chips, chicken litter (flock 1, flock 2 and broiler) and turkey litter were converted into bio-oil, gas and char in a fluidized bed reactor at the temperature ranges of 450-550 ℃. The bio-oil yield of poultry litter was relatively low (15-30 wt%) compared to wood derived bio-oil (34-42 wt%). The gas yield was increased from 32 to 61 wt% with increasing reaction temperature, and char yield was between 22 and 45 wt% depending on age and reaction conditions. The higher heating value (HHV) of the poultry litter bio-oil were between 26 and 29 MJ/kg, whereas that of the bedding material (wood chips) was 24 MJ/kg. The dynamic viscosities of bio-oil were varied from 0.01 to 27.9 Pa s at 60 ℃, and those of values were decreased with increasing shear rate.
  1. Priyadarsan S, Annamalai K, Sweeten JM, Holtzapple MT, Mukhtar S, Proceedings Comb. Inst., 30, 2973 (2005)
  2. Bridgwater AV, Meier D, Radlein D, Org. Geochem., 30, 1479 (1999)
  3. Hinton MH, Vet. J., 159, 124 (2000)
  4. Putun AE, Apaydin E, Putun E, Energy, 27(7), 703 (2002)
  5. Bridgwater AV, Peacocke VC, Renew. Sust. Energy Rev., 4, 1 (2000)
  6. Park HJ, Dong JI, Jeon JK, Yoo KS, Yim JS, Sohn JM, Park YK, J. Ind. Eng. Chem., 13(2), 182 (2007)
  7. Son S, Lee DH, Kim SD, Sung SW, J. Ind. Eng. Chem., 13(2), 257 (2007)
  8. Gaur S, Reed TB, An Atlas of Thermal Data for Biomass and other Fuels, National Renewable Energy Laboratory (1994)
  9. Zhang TY, Walawender WP, Fan LT, Fan M, Daugaard D, Brown RC, Chem. Eng. J., 105(1-2), 53 (2004)
  10. Scott SA, Dennis JS, Davisdson JF, Hayhurst AN, Fuel, 85, 1248 (2006)
  11. Alvarez VA, Vazquez A, Polym. Degrad. Stabil., 84, 13 (2004)
  12. Nada AMA, Hassan ML, Polym. Degrad. Stabil., 67, 111 (2000)
  13. Zohuriaan MJ, Shokrolahi F, Polym. Test., 23, 575 (2004)
  14. Vamvuka D, Kakaras E, Kastanaki E, Grammelis P, Fuel, 82, 1949 (2003)
  15. Wiselogel AE, Agblevor FA, Johnson DK, Deutch S, Fennell JA, Sanderson MA, Bioresour. Technol., 56(1), 103 (1996)
  16. Agblevor FA, Besler S, Wiselogel AE, Energy Fuels, 9(4), 635 (1995)
  17. Bridgwater AV, Catal. Today, 29(1-4), 285 (1996)
  18. Muller-Hagedorn M, Bockhorn H, Krebs L, Muller U, J. Anal Appl. Pyrol. 68-69, 231 (2003)
  19. Luo ZY, Wang S, Liao YF, Zhou JS, Gu YL, Cen KF, Biomass Bioenerg., 26(5), 455 (2004)
  20. Kim SS, Agblevor FA, Waste Manage., 27, 135 (2006)
  21. Park YH, Kim J, Kim SS, Park YK, Bioresour. Technol., 100, 400 (2009)
  22. Ku CS, Mun SP, J. Ind. Eng. Chem., 12(6), 853 (2006)
  23. Zhang RQ, Cummer K, Suby A, Brown RC, Fuel Process. Technol., 86(8), 861 (2005)
  24. Chen G, Andries J, Spliethoff H, Fang M, van de Enden PJ, Sol. Energy, 76, 345 (2004)
  25. Miao X, Wu Q, J. Biotechnol., 110, 85 (2004)
  26. DeGroot WF, Shafizadeh F, J. Anal. Appl. Pyrol., 6, 217 (1984)
  27. Radovanovic M, Venderbosch RH, Prins W, van Swaaij WPM, Biomass Bioenerg., 18(3), 209 (2000)