화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.26, No.2, 534-541, March, 2009
Application of gain scheduling for modeling the nonlinear dynamic characteristics of NOx emissions from utility boilers
E-mail:
A hierarchical gain scheduling (HGS) approach is proposed to model the nonlinear dynamics of NOx emissions of a utility boiler. At the lower level of HGS, a nonlinear static model is used to schedule the static parameters of local linear dynamic models (LDMs), such as static gains and static operating conditions. According to upper level scheduling variables, a multi-model method is used to calculate the predictive output based on lower-level LDMs. Both static and dynamic experiments are carried out at a 360MW pulverized coal-fired boiler. Based on these data, a nonlinear static model using artificial neural network (ANN) and a series of linear dynamic models are obtained. Then, the performance of the HGS model is compared to the common multi-model in predicting NOx emissions, and experimental results indicate that the proposed HGS model is much better than the multi-model in predicting NOx emissions in the dynamic process.
  1. Zhang Y, Ding Y, Wu Z, Kong L, Chou T, Korean J. Chem. Eng., 24(6), 1118 (2007)
  2. Visona SP, Stanmore BR, Chem. Eng. Sci., 53(11), 2013 (1998)
  3. Coimbra CFM, Azevedo JLT, Carvalho MG, Fuel, 73, 1128 (1994)
  4. Zhou H, Cen KF, Fan JR, Energy, 29(1), 167 (2004)
  5. Zhou H, Cen KF, Mao JB, Fuel, 80, 2163 (2001)
  6. Christopher AJ, Roger L, Proceedings of int’l joint power generation conference, Baltimore (1998)
  7. Booth RC, Roland WB, Proceedings of dynamic modeling control applications for industry workshop, Vancouver (1998)
  8. Laungphairojana A, Boiler operation optimization for air pollution control, Vanderbilt Univ. Press (2003)
  9. Piche S, Sayyar-Rodsari B, Johnson D, Gerules M, Control Systems Magazine, 20, 53 (2000)
  10. Rugh WJ, Shamma JS, Automatica, 36(10), 1401 (2000)
  11. Astrom KJ, Wittenamrk B, Adaptive control, Beijing, Science Press (2003)
  12. Chen PC, Shamma JS, J. Process Control, 14(3), 263 (2004)
  13. Huang ZY, Li DH, Jiang XZ, Sun LM, Proceedings of the CSEE, 23, 191 (2003)
  14. Petridis V, Kehagias A, Automatica, 34(4), 469 (1998)
  15. Chen LJ, Narendra KS, Automatica, 37(8), 1245 (2001)
  16. Fu Y, Chai TY, Automatica, 43(6), 1101 (2007)
  17. Rugh WJ, Shamma JS, Automatica, 36(10), 1401 (2000)
  18. Costa EF, Oliveira VA, Automatica, 38(7), 1247 (2002)
  19. Lawrence DA, Automatica, 37(7), 1041 (2001)
  20. Doyle FJ, Kwatra HS, Schwaber JS, Chem. Eng. Sci., 53(15), 2675 (1998)
  21. Al-Duwaish H, Naeem W, Proceedings of the 2001 IEEE international conference on control applications, Mexico City (2001)
  22. Johjns AT, Warne DF, Thermal power plant simulation and control, London, The Institution of Electrical Engineers (2003)
  23. Fang LL, Gao ZY, Proceedings of the CSEE, 23, 211 (2003)
  24. Chung DH, Yang JB, Noh DS, Kim WB, Korean J. Chem. Eng., 16(4), 489 (1999)
  25. Kalogirou SA, Prog. Energy Combust. Sci., 29, 515 (2003)