Korean Journal of Chemical Engineering, Vol.26, No.2, 411-416, March, 2009
Continuous production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate): Effects of C/N ratio and dilution rate on HB/HV ratio
E-mail:
Ralstonia eutropha was cultivated in a continuous stirred fermenter with various C/N ratios (20, 30, and 40), dilution rates, and organic salt substrates (sodium propionate or sodium valerate) to explore the microbial growth and the poly(3HB-co-3HV) accumulation. When sodium propionate was used as the secondary carbon source, the HB/HV molar ratio at various C/N ratios and dilution rates did not change appreciably (approximately 90 : 10). The highest poly(3HB-co-3HV) content in biomass (41.8%) and poly(3HB-co-3HV) productivity (0.100 g/(L·h)) occurred under
the condition with a C/N ratio of 20 and dilution rate of 0.06 h^(-1). When sodium valerate was used as the secondary carbon source, the productivity of poly(3HB-co-3HV) increased with increasing dilution rate for the C/N ratio of 30 and 40. The average HB/HV molar ratio ranged from 48 : 52 to 78 : 32. The feeding of sodium valerate promoted the accumulation of HV better than feeding sodium propionate did. This study shows that a potential strategy of manipulating by both C/N ratio and dilution rate could be used to control the HV unit fraction in poly(3HB-co-3HV) in a continuous cultivation.
Keywords:Poly(3HB-co-3HV);Continuous Cultivation;Dilution Rate;Ralstonia eutropha;C/N Ratio;Propionate;Valerate
- Anderson AJ, Dawes EA, Microbiol Rev., 54, 450 (1990)
- Choi J, Lee SY, Appl. Microbiol. Biotechnol., 51(1), 13 (1999)
- Dai Y, Yuan ZG, Jack K, Keller J, J. Biotechnol., 139, 489 (2007)
- Kasemsap C, Wantawin C, Bioresour. Technol., 98(5), 1020 (2007)
- Doi Y, Fukuda K, Biodegradable plastics and polymers, Elsevier, Tokyo, 120-135 (1994)
- Du GC, Chen J, Yu J, Lun S, Process Biochem., 37, 219 (2001)
- Ho IC, Yang SP, Chiu WY, Huang SY, International J. Biological Macromol., 40, 112 (2007)
- Matsusaki H, Abe H, Doi Y, Biomacromolecules, 1(1), 17 (2000)
- Ishihara Y, Shimizu H, Shioya S, J. Ferment. Bioeng., 81(5), 422 (1996)
- Lee IY, Kim MK, Chang HN, Park YH, Biotechnol. Lett., 16(6), 611 (1994)
- Lee SY, Biotechnol. Bioeng., 49(1), 1 (1996)
- Yim KS, Lee SY, Chang HN, Korean J. Chem. Eng., 12(2), 264 (1995)
- Yan Q, Du GC, Chen J, Process Biochem., 39, 387 (2003)
- Shang LG, Yim SC, Park HG, Chang HN, Biotechnol. Prog., 20(1), 140 (2004)
- Du GC, Chen J, Yu J, Lun SY, Biochem. Eng. J., 8, 103 (2001)
- Salehizadeh H, van Loosdrecht MCM, Biotechnol. Adv., 22, 261 (2004)
- Lee YW, Yoo YJ, Yang JW, Korean J. Chem. Eng., 12(4), 481 (1995)
- Riis V, Mai W, J. Chromatogr., 445, 285 (1988)
- Wu ST, Huang CC, Yu ST, Too JR, J. Chin. Inst. Chem. Engrs., 37, 501 (2006)
- Kim JS, Lee BH, Kim BS, Biochem. Eng. J., 23, 169 (2005)
- Preusting H, Hazenberg W, Witholt B, Enzyme Microbiol. Technol., 15, 311 (1993)
- Yu ST, Lin CC, Too JR, Process Biochem., 40, 2729 (2005)
- Yan Q, Du GC, Chen J, Chin. J. Process Eng., (in Chinese), 2, 483 (2002)
- Yim KS, Lee SY, Chang HN, Biotechnol. Bioeng., 49(5), 495 (1996)
- Ruan WQ, Chen J, Lun SY, Process Biochem., 39, 295 (2003)
- Doi Y, Microbial polyesters, VCH: New York (1990)
- Lee EY, Kang SH, Choi CY, J. Ferment. Bioeng., 79(4), 328 (1995)