화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.26, No.2, 411-416, March, 2009
Continuous production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate): Effects of C/N ratio and dilution rate on HB/HV ratio
E-mail:
Ralstonia eutropha was cultivated in a continuous stirred fermenter with various C/N ratios (20, 30, and 40), dilution rates, and organic salt substrates (sodium propionate or sodium valerate) to explore the microbial growth and the poly(3HB-co-3HV) accumulation. When sodium propionate was used as the secondary carbon source, the HB/HV molar ratio at various C/N ratios and dilution rates did not change appreciably (approximately 90 : 10). The highest poly(3HB-co-3HV) content in biomass (41.8%) and poly(3HB-co-3HV) productivity (0.100 g/(L·h)) occurred under the condition with a C/N ratio of 20 and dilution rate of 0.06 h^(-1). When sodium valerate was used as the secondary carbon source, the productivity of poly(3HB-co-3HV) increased with increasing dilution rate for the C/N ratio of 30 and 40. The average HB/HV molar ratio ranged from 48 : 52 to 78 : 32. The feeding of sodium valerate promoted the accumulation of HV better than feeding sodium propionate did. This study shows that a potential strategy of manipulating by both C/N ratio and dilution rate could be used to control the HV unit fraction in poly(3HB-co-3HV) in a continuous cultivation.
  1. Anderson AJ, Dawes EA, Microbiol Rev., 54, 450 (1990)
  2. Choi J, Lee SY, Appl. Microbiol. Biotechnol., 51(1), 13 (1999)
  3. Dai Y, Yuan ZG, Jack K, Keller J, J. Biotechnol., 139, 489 (2007)
  4. Kasemsap C, Wantawin C, Bioresour. Technol., 98(5), 1020 (2007)
  5. Doi Y, Fukuda K, Biodegradable plastics and polymers, Elsevier, Tokyo, 120-135 (1994)
  6. Du GC, Chen J, Yu J, Lun S, Process Biochem., 37, 219 (2001)
  7. Ho IC, Yang SP, Chiu WY, Huang SY, International J. Biological Macromol., 40, 112 (2007)
  8. Matsusaki H, Abe H, Doi Y, Biomacromolecules, 1(1), 17 (2000)
  9. Ishihara Y, Shimizu H, Shioya S, J. Ferment. Bioeng., 81(5), 422 (1996)
  10. Lee IY, Kim MK, Chang HN, Park YH, Biotechnol. Lett., 16(6), 611 (1994)
  11. Lee SY, Biotechnol. Bioeng., 49(1), 1 (1996)
  12. Yim KS, Lee SY, Chang HN, Korean J. Chem. Eng., 12(2), 264 (1995)
  13. Yan Q, Du GC, Chen J, Process Biochem., 39, 387 (2003)
  14. Shang LG, Yim SC, Park HG, Chang HN, Biotechnol. Prog., 20(1), 140 (2004)
  15. Du GC, Chen J, Yu J, Lun SY, Biochem. Eng. J., 8, 103 (2001)
  16. Salehizadeh H, van Loosdrecht MCM, Biotechnol. Adv., 22, 261 (2004)
  17. Lee YW, Yoo YJ, Yang JW, Korean J. Chem. Eng., 12(4), 481 (1995)
  18. Riis V, Mai W, J. Chromatogr., 445, 285 (1988)
  19. Wu ST, Huang CC, Yu ST, Too JR, J. Chin. Inst. Chem. Engrs., 37, 501 (2006)
  20. Kim JS, Lee BH, Kim BS, Biochem. Eng. J., 23, 169 (2005)
  21. Preusting H, Hazenberg W, Witholt B, Enzyme Microbiol. Technol., 15, 311 (1993)
  22. Yu ST, Lin CC, Too JR, Process Biochem., 40, 2729 (2005)
  23. Yan Q, Du GC, Chen J, Chin. J. Process Eng., (in Chinese), 2, 483 (2002)
  24. Yim KS, Lee SY, Chang HN, Biotechnol. Bioeng., 49(5), 495 (1996)
  25. Ruan WQ, Chen J, Lun SY, Process Biochem., 39, 295 (2003)
  26. Doi Y, Microbial polyesters, VCH: New York (1990)
  27. Lee EY, Kang SH, Choi CY, J. Ferment. Bioeng., 79(4), 328 (1995)